news    views    podcast    learn    |    about    contribute     republish    

agricultural economics

by   -   November 16, 2007

Figuratively speaking, a robot is a machine with a brain. They don’t really have brains, of course; they have processors and programs, which would be depicted on some low-detail flowchart as lying between sensors and actuators. But, for many purposes, processors and programs are as good as a brain, in some cases even better. If you can accurately describe, at the level of detail a computer requires, what a brain would be doing in some particular circumstance, what factors it would be taking into account and what decisions it would be making, there’s a good chance you could craft a program that would serve just as well. Load this program into the processor of an appropriately designed machine, and you have a machine capable of handling the job.

 

Granted that it’s far easier to create such a program for a machine intended to vend beverage cans than for one intended to plant, tend, and harvest a mixture of crops in an uncontrolled, nonuniform environment. The latter is harder, but not impossible, nor even so far beyond some other tasks to which computers have already been put, such as handling a complex mix of financial transactions or handling the control surfaces of an otherwise unstable aircraft.

 

Plants have numerous characteristics which, if not already known, are at least measurable. Soils likewise can be measured and typed. Weather is the most unpredictable factor, but even weather is regular enough to be categorized as a climate, and statistical approaches allow decisions to be made in the face of unknowables, which on average work out well enough. It’s a complex context, but not unmanageably so.

 

Thankfully, it isn’t necessary that any such system perform perfectly. It’s only necessary, as an initial condition, that it either perform on par with conventional practice while costing less, or outperform conventional practice while costing about the same.

 

This becomes easier with each passing year, as the cost of diesel fuel and other petroleum-based agricultural inputs steadily rises, and as the power of computing equipment and the sophistication of programming tools improve.

 

The rising cost of petroleum works against conventional practice and for a dramatically different approach utilizing robotics because conventional practice is utterly dependent upon huge amounts of fuel, fertilizer, and pesticides, whereas robotics can make possible an alternative approach without those dependencies.

 

The alternative approach itself is as old as gardening. Robotics can make this approach a contender by duplicating the knowledge, skills, and hands of the gardener many times over, making it applicable to land areas measured in hundreds or thousands of acres instead of square feet. That’s where the distinction between a robot and other types of machines comes in. A robot is a machine with a brain of its own. Robots can operate autonomously, meaning there doesn’t have to be a human operator present and you don’t need as many human operators as you have machines.

 

That’s an essential point. It’s the one-to-one correspondence between operator and machine that has shaped conventional practice, exerting upward pressure on the size and power of the machines as economics exerted upward pressure on the amount of land required to earn a decent income. And large, powerful machines are only really useful for conducting operations that are applied uniformly over entire fields. The result is mile after mile of fields, all planted to the same crop at very nearly the same time.

 

Breaking that one-to-one correspondence is the key to breaking the dependence on oil, while at the same time dramatically increasing the variety of production and relieving the oppressive monotony that has so overtaken the rural American landscape.

 

And the key to breaking that correspondence is machines with enough brains to operate autonomously.

 

Reposted from Cultibotics.

by   -   November 10, 2007

While it’s inevitable that agriculture will eventually incorporate robotics to some degree, what form that takes is a wide open question, one that, left to itself, would eventually find an answer driven [overwhelmingly] by the near-to-mid term financial interests of the most powerful players, a.k.a. agribusiness.

 

Without a transformational vision, more than parsimonious transformation is unlikely to result.

 

I aim to provide such a vision, and to help connect and empower those who find themselves enlivened by it.

 

This vision is about fusing ecological reasoning into every aspect of the technology employed to conduct land management, specifically including the management of land engaged in agricultural production.

 

That creating such a technology is possible is beyond reasonable doubt, but whether the resources to do so will be brought to bear in a timely manner, and whether that technology will find a clear path to widespread adoption, are far less certain.

 

It may require that we demand [or conjure] it into existence.

 

Reposted from Cultibotics.

by   -   September 15, 2007

Why use robots to do what people can do, when there are so many unemployed?

 

Before responding to that question, let me turn it around. Why, given that there are no laws preventing them from doing so, are so few people in the ‘modern world’ engaged in by-hand cultivation, or even cultivation using draft animals?

 

One big reason is that land isn’t free, and the cheapest land is located far from city markets, as well as from the amenities cities provide. And, even if there were still land for homesteading, there’s the matter of potable water, housing, tools, seed, food enough to last until the first crops come in, canning supplies and equipment if part of that crop has to last through the winter, and some means of transporting a portion of the crop to market. If you’re growing one of the local commodity crops, you can almost leave off the transportation part, since there will already be a network in place for that purpose, and you’ll only need to move your crop as far as the nearest node in that network, but you’ll also be competing with other producers benefitting from economies of scale for the thin margins they’re accustomed to. If, on the other hand, you’re growing watermelons in wheat country, you’ll have to provide your own transportation.

 

Okay, back to the original question, why robots, given that there are people in need of work?

 

People are slow. One person can just about manage five acres by hand, if they work at it full time. Depending on the climate and what’s being grown, that might be enough to feed as many as twenty, or at least provide them with vegetables, which isn’t such a bad consumer/producer ratio, but it’s far lower than the average for conventional agriculture. One person using the sort of equipment you see everywhere in rural America, can work between 600 and 1,000 acres, planted to crops like wheat or soybeans that lend themselves to bulk handling.

 

People are expensive. Who’s going to pay the unemployed to produce by hand a small fraction of what is already being produced far more cheaply by means of machines under direct human control? Even if the current cost of production were to rise several fold, current practice would still result in cheaper food than what workers earning minimum wage could produce by hand. Granted that the economics are better for crops that don’t lend themselves to linear mechanization (performing field operations while/by moving over the surface), and that a diet limited to those that do would be significantly impoverished.

 

People are lazy have other priorities. And well they should! (Personally, I’m a fan of Bucky Fuller’s idea of paying people, modestly, to go to school. They benefit by becoming more marketable, and society benefits through an increase in the skill-level of its workforce.)

 

People would [still] be needed. A conversion from tractors to small, autonomous machines [applying horticultural techniques] almost certainly would not result in a net displacement of workers, rather the reverse, and you’re more likely to find enough people (4..8, at a guess) willing to maintain (and augment*) the machines that manage a square mile of land than you are to find enough people (about 100) willing to work that land by hand.

 

*(Especially at first, it’s unlikely that robots would be able to do everything that needed to be done, and the gaps in their capabilities would have to be supplied otherwise, most likely by people.)

 

Reposted from Cultibotics.



inVia Robotics: Product-Picking Robots for the Warehouse
October 7, 2019


Are you planning to crowdfund your robot startup?

Need help spreading the word?

Join the Robohub crowdfunding page and increase the visibility of your campaign