Teaching motion primitives

01 December 2011

share this:

Finding ways to easily teach service robots new motions will be key to their integration in our everyday environments. Ideally, teaching a robot should be no different than teaching a human.

For example, to teach someone a new dance, you might first show them the basic steps. You will most likely mention motion primitives, such as “right foot forward” and not the actual position of all your body joints. The apprentice dancer will then try to imitate your steps. To refine dance moves, the teacher can physically correct the motion by pushing the elbow higher, straightening the back or guiding the steps. However, if the student has been taught to move forward with its right foot, and the teacher pushes in the opposite direction, the dancer will most likely freeze. This is due to the fact that refinements should fit within a certain region around the movement that the person expects (refinement tube). Over time, the dancer iteratively improves its movements, forgetting older clumsy moves along the way.

Following this exact idea, Lee et al. have been teaching motion primitives to the humanoid upper-body robot “Justin”. Experiments use the 19 joints of the arms (2 times 7 DOF), torso (3 DOF), and head (2 DOF). The framework shown in the schematic below, uses imitation learning followed by iterative kinesthetic motion refinements (physically guided corrections) within a refinement tube. Motion primitives are represented as a hidden Markov Model.

The authors hope that in the future, these algorithms can contribute to making humanoid robots, which are capable of autonomous long-term learning and adaptation.


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by

RoboCup humanoid league: Interview with Jasper Güldenstein

We talked to Jasper Güldenstein about how teams transferred developments from the virtual humanoid league to the real-world league.
20 September 2022, by and

©2021 - ROBOTS Association


©2021 - ROBOTS Association