Robohub.org
 

Teaching tykes to program robots

Kibo allows young tinkerers to build a robot using supplied modular components, personalize it with art designs and then program it to do their bidding using colored program blocks. Credit: DevTech research grouo, Tufts University

Kibo allows young tinkerers to build a robot using supplied modular components, personalize it with art designs and then program it to do their bidding using colored program blocks.
Credit: DevTech research grouo, Tufts University

Playgrounds are popular spaces for young children to play and learn. They promote exploration of the physical environment and motor and social skill development, allowing young children to be autonomous while developing core competencies.

Playpens, by contrast, corral children into safe, confined spaces. Although they are mostly riskfree, there is little opportunity for exploration and imaginative play.

From a developmental perspective, the playground promotes a sense of mastery, creativity, self-confidence, social awareness and open exploration, while the playpen hinders development of these traits.

“We’re trying to develop technologies to get us as close as we can to the metaphor of the playground,” said Marina Umaschi Bers, a professor of computer science and Child Development at Tufts University, director of DevTech research group and author of Designing Digital Experiences for Positive Youth Development: From Playpen to Playground.

Many are familiar with Bers through her work on ScratchJr – a programming language where even students who are too young to read and write can put together actions in a sequence to create interactive stories, games and animations.

Last June, with NSF support, Bers and her colleagues released ScratchJr as a free app for children ages 5 to 7. (A Kickstarter campaign in May raised $75,000 to adapt the app for Android and iPad.) As of February 2015, ScratchJr. had more than 500,000 downloads worldwide.

KIBO is a robot kit specifically designed for young children aged 4-7 years old. Children build their own robot with KIBO, program it to do what they want and decorate it. KIBO gives children the chance to make their ideas physical and tangible, and KIBO does all this without requiring screen time from PCs, tablets or smartphones. Credit: KinderLab Robotics

KIBO is a robot kit specifically designed for young children aged 4-7 years old. Children build their own robot with KIBO, program it to do what they want and decorate it. KIBO gives children the chance to make their ideas physical and tangible, and KIBO does all this without requiring screen time from PCs, tablets or smartphones.
Credit: KinderLab Robotics

Speaking at NSF last spring, Bers described her latest project, the KIWI robotic kit (subsequently renamed KIBO), which teaches programming through robotics, without screens, tablets or keyboards.

Using KIBO, students scan wooden blocks to give robots simple commands, in the process learning sequencing, one of the most important skills for early age groups. By combining a series of commands, kids make the robot move, dance, sing, sense the environment or light up.

With an NSF Small Business Innovation Research grant, Bers co-founded KinderLab Robotics and, using insights from her 15 years of research, transformed the KIWI prototype into a widely-available cyberlearning toy that could impact a large number of kids.

KIBO shipped its first several hundred units in 2014, but, according to Bers, building and selling KIBO was only a small part of the challenge.

“We don’t want to give away the technology and wash our hands of it,” Bers said. “We’re training the whole individual.”

For that reason, KIBO comes with a curriculum, lesson plans, badges, design journals and even teacher and parent training.

In March 2015, Bers and Amanda Sullivan, also of Tufts’ DevTech Group, published an article in the International Journal of Technology and Design Education describing learning outcomes from the eight-week robotics curriculum in pre-kindergarten through second grade. The results showed that beginning in pre-kindergarten, children were able to master basic robotics and programming skills, while older children were able to master increasingly complex concepts using the robotics kit in the same amount of time.

Both the KIBO robotic kit and the ScratchJr programming language have left the academic ivory tower and are now available to the wider public.

“When we teach children how to read and write, we don’t expect everyone to become a journalist or a novelist,” Bers said, speaking about KIBO in The New York Times. “But we believe they’ll be able to think in new ways because it opens the doors to thinking. We believe the same thing for the skills of programming and engineering.”

Children build their own robot with KIBO, program it to do what they want and decorate it – all without a PC, tablet or smartphone. Marina Bers of the DevTech Research Group at Tufts University developed the cyberlearning technology with support from the National Science Foundation. Credit: DevTech Research Group, Tufts University

 

The Kibo robot kit aims to teach young kids programming skills. Credit: DevTech Research Group, Tufts University


tags: , , , , , ,


the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.
the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.





Related posts :



A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

Swiss Robotics Day showcases innovations and collaborations between academia and industry

The 2021 Swiss Robotics Day marked the beginning of NCCR Robotics’s final year. The project, launched in 2010, is on track to meet all its scientific goals in the three areas of wearable, rescue and educational robotics, while continuing to focus on supporting spin-offs, advancing robotics education and improving equality of opportunities for all robotics researchers.
10 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association