Robohub.org
 

The application of ‘elegance’ to machine behavior

by
30 January 2010



share this:

We all have some idea of what elegance means, whether our notion of it is tied up with silky evening dresses, polished wood and brass, chandeliers and stained glass windows, exotic carpets, and expensive sports cars, or with youthful bodies that are tanned and fit, knowing the local language well enough to use it sparingly with assurance, being appropriately dressed for the weather, good posture, fluid movement, a varied diet of moderate proportions, giving every task as much time as it requires, and so on.

 

Applying the notion of elegance to machine behavior may resonate for some and not for others. What could it possibly mean, elegant machine behavior, wouldn’t that be a contradiction in terms?

 

In this piece on another blog, I suggest that Apple should get into robotics, partly because to fail to do so would be to leave the largest looming growth market to others, and partly because I believe the company has something to contribute, something relating to elegance. I think Apple would set a high standard for machine behavior, and then exceed it, providing a tangible example of first-order elegance.

 

I say “first-order elegance” to suggest that there is also a “second-order” or “meta-elegance” that looks beyond present behavior to its ultimate effects. For example, formality may appear elegant, but if children are subjected to it all the time they may fail to develop emotional intelligence, an inelegant result.

 

As applied here, it is second-order or meta-elegance that is more important. It matters far less whether machines that tend land appear deft in their actions than whether the result of those actions appears more garden or desert-like. That’s not to say that first-order elegance is unimportant. Efficient movement, of the entire machine and of its parts, is an important aspect of cost-effectiveness, but efficiently producing a undesirable result gains nothing.

 

I believe that second-order elegance is achievable in this context, that machines can be programmed to understand complex living systems and nurture them, while raising food and fiber for market in their midst. If I didn’t believe that I would never have bothered trying to explain this vision of a greener future founded on robotics.

 

Reposted from Cultibotics.



tags: ,


John Payne





Related posts :



ep.

352

podcast

Robotics Grasping and Manipulation Competition Spotlight, with Yu Sun

Yu Sun, previous chair of the Robotics Grasping and Manipulation Competition, speaks on the value that this competition brought to the robotics community.
21 May 2022, by
ep.

351

podcast

Early Days of ICRA Competitions, with Bill Smart

Bill Smart, one fo the early ICRA Competition Chairs, dives into the high-level decisions involved with creating a meaningful competition.
21 May 2022, by

New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association