Robohub.org
 

The Frontiers of Machine Learning: Live webcast


by
31 January 2017



share this:

The webcast will take place on today from 9am-5:30pm EST and February 1st from 9am-5pm EST. Webcast participants are encouraged to submit questions for the presenters by e-mailing Michelle Schwalbe at mschwalbe@nas.edu who will read them out if time permits.

Machine learning is at the core of many applications that have become part of daily life, from voice recognition to image perception. These technologies, which a few years ago were performing at noticeably below-human levels, can now outperform people at some tasks. As the field continues to evolve, machine learning has the potential to play a transformative role across a diverse range of sectors including transportation, medicine, public services, and finance. This forum will bring together scientists from the UK and the US to explore potential applications for machine learning and discuss the legal and ethical challenges that could arise as machine learning algorithms are implemented.

Watch the live webcast here.

Session outlines below:

Session 1: The Frontiers of Machine Learning

The ubiquity of data, accessibility of computing power, and algorithmic advances have driven rapid progress in machine learning over the past five years. Not only does machine learning now underpin many applications that have become part of daily life, the field continues to evolve quickly, and has the potential to play a transformative role across a diverse range of sectors. This session will explore the frontiers of machine learning, in terms of both cutting-edge technology and near-term applications, and discuss the state of the art of machine learning.


Session 2: Machine learning and society

People and machine learning systems are increasingly interacting through a range of applications or contexts. This expansion of machine learning raises legal and ethical questions, re-frames discussions about uses of data, and poses new challenges for the governance of this technology. The social acceptability of different machine learning applications, desirability of automated decision-making processes, adequacy of processes to manage concerns about statistical stereotyping or privacy, and more, will all influence how and where society has confidence in the deployment of machine learning systems. This session will explore the societal implications of increased use of machine learning, and the opportunities and challenges associated with advances in the field.


Session 3: Machine learning in the research and commercial communities

There are enormous opportunities in machine learning in academia, research labs, and industry. While much of the research and development of machine learning to date has been done in the commercial world, each of these communities will continue advancing this field. Establishing key research challenges and areas of commercial opportunity will, therefore, be important in moving the frontiers of machine learning forward. This session will explore key areas of interest in machine learning in the research and commercial communities.


Twitter feed


About the Sackler Forum

The Raymond and Beverly Sackler U.S.-U.K. Scientific Forum was established to help the scientific leadership of the United Kingdom and the United States forge an enduring and productive partnership on pressing topics of worldwide scientific concern with benefit to all people. These meetings are organized jointly by the National Academy of Sciences and the Royal Society, and alternate between locations in the U.S. and the U.K. This program is made possible by a generous gift from Raymond and Beverly Sackler.



tags: , , ,


Robohub Editors





Related posts :



Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association