Robohub.org
 

The Frontiers of Machine Learning: Live webcast

by
31 January 2017



share this:

The webcast will take place on today from 9am-5:30pm EST and February 1st from 9am-5pm EST. Webcast participants are encouraged to submit questions for the presenters by e-mailing Michelle Schwalbe at mschwalbe@nas.edu who will read them out if time permits.

Machine learning is at the core of many applications that have become part of daily life, from voice recognition to image perception. These technologies, which a few years ago were performing at noticeably below-human levels, can now outperform people at some tasks. As the field continues to evolve, machine learning has the potential to play a transformative role across a diverse range of sectors including transportation, medicine, public services, and finance. This forum will bring together scientists from the UK and the US to explore potential applications for machine learning and discuss the legal and ethical challenges that could arise as machine learning algorithms are implemented.

Watch the live webcast here.

Session outlines below:

Session 1: The Frontiers of Machine Learning

The ubiquity of data, accessibility of computing power, and algorithmic advances have driven rapid progress in machine learning over the past five years. Not only does machine learning now underpin many applications that have become part of daily life, the field continues to evolve quickly, and has the potential to play a transformative role across a diverse range of sectors. This session will explore the frontiers of machine learning, in terms of both cutting-edge technology and near-term applications, and discuss the state of the art of machine learning.


Session 2: Machine learning and society

People and machine learning systems are increasingly interacting through a range of applications or contexts. This expansion of machine learning raises legal and ethical questions, re-frames discussions about uses of data, and poses new challenges for the governance of this technology. The social acceptability of different machine learning applications, desirability of automated decision-making processes, adequacy of processes to manage concerns about statistical stereotyping or privacy, and more, will all influence how and where society has confidence in the deployment of machine learning systems. This session will explore the societal implications of increased use of machine learning, and the opportunities and challenges associated with advances in the field.


Session 3: Machine learning in the research and commercial communities

There are enormous opportunities in machine learning in academia, research labs, and industry. While much of the research and development of machine learning to date has been done in the commercial world, each of these communities will continue advancing this field. Establishing key research challenges and areas of commercial opportunity will, therefore, be important in moving the frontiers of machine learning forward. This session will explore key areas of interest in machine learning in the research and commercial communities.


Twitter feed


About the Sackler Forum

The Raymond and Beverly Sackler U.S.-U.K. Scientific Forum was established to help the scientific leadership of the United Kingdom and the United States forge an enduring and productive partnership on pressing topics of worldwide scientific concern with benefit to all people. These meetings are organized jointly by the National Academy of Sciences and the Royal Society, and alternate between locations in the U.S. and the U.K. This program is made possible by a generous gift from Raymond and Beverly Sackler.



tags: , , ,


Robohub Editors





Related posts :



Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by
ep.

339

podcast

High Capacity Ride Sharing, with Alex Wallar

In this episode, our interviewer Lilly speaks to Alex Wallar, co-founder and CTO of The Routing Company. Wallar shares his background in multi-robot path-planning and optimization, and his research on scheduling and routing algorithms for high-capacity ride-sharing. They discuss how The Routing Company helps cities meet the needs of their people, the technical ins and outs of their dispatcher and assignment system, and the importance of public transit to cities and their economics.
12 October 2021, by

50 women in robotics you need to know about 2021

It’s Ada Lovelace Day and once again we’re delighted to introduce you to “50 women in robotics you need to know about”! From the Afghanistan Girls Robotics Team to K.G.Engelhardt who in 1989 ...
12 October 2021, by and

Join the Women in Robotics Photo Challenge

How can women feel as if they belong in robotics if we can't see any pictures of women building or programming robots? The Civil Rights Activist Marian Wright Edelson aptly said, "You can't be what yo...
12 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association