Robohub.org
 

Underwater 3D mapping


by
13 May 2011



share this:

We saw the need for good underwater robots during the Deepwater spill last summer. In such scenarios, a remote operator controls a robot equipped with a camera and means to build a 2D map of the environment. However, if you want your robot to inspect non-trivial structures such as oil- and gas- production and transport equipment, or if you want it to be more autonomous in challenging environments, 3D mapping is essential.

As seen in previous posts, to make a 3D map for a ground robot you might use a laser-range finder. However, similar sensors are not available in underwater environments and the researchers are left coping with low-resolution and noisy measurement systems. To solve this problem, Bülow et al. propose a new method to combine sensory information from noisy 3D sonar scans that partially overlap. The general idea is that the robot scans the environment, moves a little, and then scans the environment again such that the scans overlap. By comparing them, the researchers are able to figure out how the robot moved and can use that to infer where each scan was taken from. This means that there is no need to add expensive motion sensors typically required by other state-of-the-art strategies (Inertial Navigation Systems, and Doppler Velocity Logs).

The approach was first tested in simulation on virtual images with controllable levels of noise. Results show that the method is not computationally expensive, can deal with large spatial distances between scans, and that it is very robust to noise. The authors then plunged a Tritech Eclipse sonar in a river in Germany to generate 18 scans of the Lesumer Sperrwerk, a river flood gate. Results from that experiment shown in the video below compared well to other approaches described in the literature.



In the future, Bülow et al. hope to combine this approach with SLAM to avoid the accumulation of relative localization errors.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence