Robohub.org
 

Underwater 3D mapping


by
13 May 2011



share this:

We saw the need for good underwater robots during the Deepwater spill last summer. In such scenarios, a remote operator controls a robot equipped with a camera and means to build a 2D map of the environment. However, if you want your robot to inspect non-trivial structures such as oil- and gas- production and transport equipment, or if you want it to be more autonomous in challenging environments, 3D mapping is essential.

As seen in previous posts, to make a 3D map for a ground robot you might use a laser-range finder. However, similar sensors are not available in underwater environments and the researchers are left coping with low-resolution and noisy measurement systems. To solve this problem, Bülow et al. propose a new method to combine sensory information from noisy 3D sonar scans that partially overlap. The general idea is that the robot scans the environment, moves a little, and then scans the environment again such that the scans overlap. By comparing them, the researchers are able to figure out how the robot moved and can use that to infer where each scan was taken from. This means that there is no need to add expensive motion sensors typically required by other state-of-the-art strategies (Inertial Navigation Systems, and Doppler Velocity Logs).

The approach was first tested in simulation on virtual images with controllable levels of noise. Results show that the method is not computationally expensive, can deal with large spatial distances between scans, and that it is very robust to noise. The authors then plunged a Tritech Eclipse sonar in a river in Germany to generate 18 scans of the Lesumer Sperrwerk, a river flood gate. Results from that experiment shown in the video below compared well to other approaches described in the literature.



In the future, Bülow et al. hope to combine this approach with SLAM to avoid the accumulation of relative localization errors.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence