Vision-based navigation with motion blur

20 July 2010

share this:

Robots often need to know where they are in the world to navigate efficiently. One of the cheapest ways to localize is to strap a camera on-board and extract visual features from the environment. However, challenges arise when robots move fast enough to create motion blur. The problem is that blurry images lead to decreased accuracy in localization. Because of this, robots that move too fast might no longer be able to localize and as a result might get lost or need to stop and re-localize.

Instead, Hornung et al. propose to use reinforcement learning to determine the optimal policy which allows the robots to go at speeds appropriate for navigation while ensuring that they get to destination as fast as possible. The actual implementation uses an augmented Markov decision process (MDP) to model the navigation task.

The learned policy is then compressed using a clustering technique to avoid being memory-sassy, which would be a major limitation for robots with low storage capacity.

Experiments were successfully conducted on two different robots in indoor and outdoor scenarios (see video) and the robots were faster than if they had navigated at constant speed. In the future, Hornung et al. hope to implement their system on fast moving robots, such as unmanned aerial vehicles!


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

In this episode, Audrow Nash speaks to Maria Telleria, who is a co-founder and the CTO of Canvas. Canvas makes a drywall finishing robot and is based in the Bay Area. In this interview, Maria talks ab...
21 June 2022, by and

Coffee with a Researcher (#ICRA2022)

As part of her role as one of the IEEE ICRA 2022 Science Communication Awardees, Avie Ravendran sat down virtually with a few researchers from academia and industry attending the conference.

Seeing the robots at #ICRA2022 through the eyes of a robot

Accessbility@ICRA2022 and OhmniLabs provided three OhmniBots for the conference, allowing students, faculty and interested industry members to attend the expo and poster sessions.
17 June 2022, by

Communicating innovation: What can we do better?

The question on what role communications play in forming the perception of innovative technology was discussed in this workshop. Experts explained how the innovation uptake should be supported by effective communication of innovations: explaining the benefits, tackling risks and fears of the audiences, and taking innovation closer to the general public.
15 June 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association