Robohub.org
 

Why football, not chess, is the true final frontier for robotic artificial intelligence

by
20 July 2016



share this:
Robocup 2013 in Eindhoven. Photo credit: Ralf Roletschek via Wikimedia Commons.

Robocup 2013 in Eindhoven. Photo credit: Ralf Roletschek via Wikimedia Commons.

The perception of what artificial intelligence was capable of began to change when chess grand master and world champion Garry Kasparov lost to Deep Blue, IBM’s chess-playing program, in 1997. Deep Blue, it was felt, had breached the domain of a cerebral activity considered the exclusive realm of human intellect. This was not because of something technologically new: in the end, chess was felled by the brute force of faster computers and clever heuristics. But if chess is considered the game of kings, then the east Asian board game Go is the game of emperors.

Significantly more complex, requiring even more strategic thinking, and featuring an intricate interweaving of tactical and strategical components, it posed an even greater challenge to artificial intelligence. Go relies much more on pattern recognition and subtle evaluation of the general positions of playing pieces. With a number of possible moves per turn an order of magnitude greater than chess, any algorithm trying to evaluate all possible future moves was expected to fail.

Until the early 2000s, programs playing Go progressed slowly, and could be beaten by amateurs. But this changed in 2006, with the introduction of two new techniques. First was the Monte Carlo tree search, an algorithm that rather than attempting to examine all possible future moves instead tests a sparse selection of them, combining their value in a sophisticated way to get a better estimate of a move’s quality. The second was the (re)discovery of deep networks, a contemporary incarnation of neural networks that had been experimented with since the 1960s, but which was now cheaper, more powerful, and equipped with huge amounts of data with which to train the learning algorithms.

The combination of these techniques saw a drastic improvement in Go-playing programs, and ultimately Google DeepMind’s AlphaGo program beat Go world champion Lee Sedol in March 2016. Now that Go has fallen, where do we go from here?

The future of AI is in physical form

Following Kasparov’s defeat in 1997, scientists considered that the challenge for AI was not to conquer some cerebral game. Rather, it needed to be physically embodied in the real world: football.

Football is easy for humans to pick up, but to have a humanoid robot running around a field on two legs, seeing and taking control of the ball, communicating under pressure with teammates, and all mostly without falling over, was considered completely out of the question in 1997. Only a handful of laboratories were able to design a walking humanoid robot. Led by Hiroaki Kitano and Manuela Veloso, the ambitious goal set that year was to have by 2050 a team of humanoid robots able to play a game of football against the world champion team according to FIFA rules, and win. And so the RoboCup competition was born.

The RoboCup tournament held its 20th competition in Leipzig this year. Its goal has always been to improve and challenge the capacity of artificial intelligence and robotics, not in the abstract but in the much more challenging form of physical robots that act and interact with others in real time. In the years since, many other organisations have recognised how such competitions boost technological progress.

The first RoboCup featured only wheeled robots and simulated 2D football leagues, but soon leagues that permitted Sony’s four-legged AIBO robot dogs were introduced and, since 2003, humanoid leagues. In the beginning, the humanoids’ game was quite limited, with very shaky robots attempting quivering steps, and where kicking the ball almost invariably caused the robot to fall. In recent years, their ability has significantly improved: many labs now boast five or six-a-side humanoid robot teams.

No ordinary ballgame

In order to push competitors on to reach the goal of a real football match by 2050, the conditions are made harder every year. Last year, the green carpet was replaced by artificial turf, and the goalposts and the ball coloured white. This makes it harder for robots to maintain stability and poses a challenge of recognising the goals and ball. So while the robots may seem less capable this year than the year before, it’s because the goalposts are moving.

The tasks involved in playing football, although much more intuitive to humans than chess or Go, are a major challenge for robots. Technical problems of hitherto unimaginable complexity have to be solved: timing a kick while running, identifying the ball against a glaring sun, running on wet grass, providing the robot with sufficient energy for 45 minutes’ play, even the materials that go into constructing a robot can’t disintegrate during a forceful game. Other problems to be solved will define important aspects of our life with robots in the future: when a robot collides with a human player, who can take how much damage? If humans commit fouls, may a robot foul back?

RoboCup offers up in miniature the problems we face as we head towards intelligent robots interacting with humans. It is not in the cerebral boardgames of chess or Go, but here on the pitch in the physical game of football that the frontline of life with intelligent robots is being carved out.

This article was originally published on The Conversation. Read the original article.


If you enjoyed this article, you may also want to read:



tags: , ,


Daniel Polani is a Professor of Artificial Intelligence at University of Hertfordshire.
Daniel Polani is a Professor of Artificial Intelligence at University of Hertfordshire.





Related posts :



ep.

340

podcast

NVIDIA and ROS Teaming Up To Accelerate Robotics Development, with Amit Goel

Amit Goel, Director of Product Management for Autonomous Machines at NVIDIA, discusses the new collaboration between Open Robotics and NVIDIA. The collaboration will dramatically improve the way ROS and NVIDIA's line of products such as Isaac SIM and the Jetson line of embedded boards operate together.
23 October 2021, by

One giant leap for the mini cheetah

A new control system, demonstrated using MIT’s robotic mini cheetah, enables four-legged robots to jump across uneven terrain in real-time.
23 October 2021, by

Robotics Today latest talks – Raia Hadsell (DeepMind), Koushil Sreenath (UC Berkeley) and Antonio Bicchi (Istituto Italiano di Tecnologia)

Robotics Today held three more online talks since we published the one from Amanda Prorok (Learning to Communicate in Multi-Agent Systems). In this post we bring you the last talks that Robotics Today...
21 October 2021, by and

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association