Robohub.org
 

Automated vehicle crashes


by
29 May 2015



share this:
Photo source: Wikipedia [Flckr user jurvetson (Steve Jurvetson) CC BY-SA 2.0]

Photo source: Wikipedia [Flckr user jurvetson (Steve Jurvetson) CC BY-SA 2.0]

Earlier this month, the Associated Press reported on several past crashes involving automated vehicles. (Per SAE Standard J3016, I use the term “automated vehicle” instead of “autonomous vehicle” or “self-driving car” or “driverless car.”) A few thoughts.

1) As I wrote in 2012, we would need more information — about the crashes themselves, the conditions under which each company’s automated vehicles are tested, and the situations in which each company’s test drivers intervene — to provide statistical context for these incidents.

2) In some ways, the AP’s inquiry gave us a preview of how public and private actors might respond to future automated vehicle crashes that actually result in injury or death. It may be instructive to view the reactions ofGoogleDelphi, and the California DMV in this light.

3) Over the last few years, I have advised both developers and regulators of automated systems to put in place specific plans for responding, both publicly and privately, to the first high-profile incidents involving these systems. My sense, however, is that many organizations still have not created these “break-the-glass” or “break-glass” plans.

4) Earlier this semester, my impressive Law of the Newly Possible students did develop two thoughtful break-glass plans: one for the developers of automated driving systems and another for the regulators of these systems. Interestingly, although the private-sector group and the public-sector group each recognized the need to communicate with each other in the event of a crash, each also hesitated in reaching out to the other in the course of planning. In the real world, a broad range of stakeholders should be coordinating these plans sooner rather than later.

5) My book chapter on Regulation and the Risk of Inaction, also released this week, identifies eight public-sector strategies for managing risks related to automated driving. It can be freely downloaded here. A key point is that we must expect more of conventional drivers as well as automated vehicles. To paraphrase myself: I’m concerned about computer drivers, but I’m terrified about human drivers.

6) As always, please visit newlypossible.org for additional materials.



tags: , ,


Bryant Walker Smith is an expert on the legal aspects of autonomous driving and a fellow at Stanford Law School.
Bryant Walker Smith is an expert on the legal aspects of autonomous driving and a fellow at Stanford Law School.





Related posts :



Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence