Robohub.org
 

iCub drums and crawls using bio-inspired control


by
17 January 2012



share this:

Ever see a lizard effortlessly run up a wall?

Like most vertebrates, lizards are able to quickly adapt to new environments in a robust way thanks to a special type of movement generator. The idea is that a high-level planner (the brain) is responsible for determining the key characteristics of a movement such as the position that needs to be reached by a limb or the amplitude and frequency with which the limbs should perform rhythmic motions. These high-level commands then serve as an input to motion primitives responsible for activating muscles in the correct sequence. Motion primitives are typically organized at the spinal level through neural networks called central pattern generators (CPGs).

This control architecture has many advantages for robotics. First, once the motion primitives are designed, only high-level commands are required to control the entire motion of the robot. Therefor, instead of planning the positions of all joints, the motion planner only needs to issue high-level goals such as “reach there” or “move your arm rhythmically with this amplitude and this frequency”. This greatly reduces the complexity of planning motions for robots with many degrees of freedom. Furthermore, CPGs are very fast, have low computational cost and can be modulated by sensory feedback in order to obtain adaptive behaviors.

Using this control architecture, Degallier et al. were able to turn the iCub humanoid seen in the video below into an on-demand drummer. Random users at a robotics conference were able to change on-line a score that the iCub was playing or test how well it could adapt when its drums were moved. To show the generality of their approach, they then applied the same architecture to make the iCub crawl and reach for objects. Although one behaviour was rhythmic (crawling) and the other discrete (reaching), the robot was easily able to switch between the two.



tags: ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence