Robohub.org
 

Learning acrobatic maneuvers for quadrocopters


by
17 April 2012



share this:

Have you ever seen those videos of quadrocopters performing acrobatic maneuvers?

The latest paper on the Autonomous Robots website presents a simple method to make your robot achieve adaptive fast open-loop maneuvers, whether it’s performing multiple flips or fast translation motions. The method is thought to be straightforward to implement and understand, and general enough that it could be applied to problems outside of aerial acrobatics.

Before the experiment, an engineer with knowledge of the problem defines a maneuver as an initial state, a desired final state, and a parameterized control function responsible for producing the maneuver. A model of the robot motion is used to initialize the parameters of this control function. Because models are never perfect, the parameters then need to be refined during experiments. The error between the robot’s desired state and its achieved state after each maneuver is used to iteratively correct parameter values. More details can be found in the figure below or in the paper.

Method to achieve adaptive fast open-loop maneuver. p represents the parameters to be adapted, C is a first-order correction matrix, γ is a correction step size, and e is a vector of error measurements. (1) The user defines a motion in terms of initial and desired final states and a parameterized input function. (2) A first-principles continuous-time model is used to find nominal parameters p0 and C. (3) The motion is performed on the physical vehicle, (4) the error is measured and (5) a correction is applied to the parameters. The process is then repeated.

Experiments were performed in the ETH Flying Machine Arena which is equipped with an 8-camera motion capture system providing robot position and rotation measurements used for parametric learning.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 103 – Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association