Robohub.org
 

Powering the robocar: Ultracapacitors and other energy sources


by
11 June 2015



share this:
Photo credit: John Eckman via Flickr. https://www.flickr.com/photos/jeckman/6183019560

Photo credit: John Eckman via Flickr.

A reader recently asked about the synergies between robocars and ultracapacitors / supercapacitors. It turns out they are not what you would expect, and it teaches some of the surprising lessons of robocars.

Ultracapacitors (ultracaps) are electrical storage devices — like batteries — that can be charged and discharged very, very quickly. That makes them interesting for electric cars, because slow charging is the bane of electric cars. They also tend to support a very large number of charge and discharge cycles: they don’t wear out the way batteries do. Where you might get 1,000 or so cycles from a good battery, you could see several tens of thousands from an ultracap.

Today, ultracaps cost a lot more than batteries. LIon batteries (like in the Tesla and almost everything else) are at $500/kwh of capacity and falling fast — some forecast it will be $200 in just a few years, and it’s already cheaper in the Tesla. Ultracaps are $2,500 to $5,000 per kwh, though people are working to shrink that.

They are also bigger and heavier. They are cited as just 10 wh/kg and on their way to 20 wh/kg. That’s really heavy — LIon are an order of magnitude better at 120 wh/kg and also improving.

So with the ultracap, you are paying a lot of money and a lot of weight to get a super-fast recharge. It’s so much money that you could never justify it if not for the huge number of cycles. That’s because there are two big money numbers on a battery — the $/kwh of capacity — which means range — and the lifetime $/kwh, which affects your economics. Lifetime $/kwh is actually quite important but mostly ignored because people are so focused on range. An ultracap, at 5x the cost but 10x or 20x the cycles actually wins out on lifetime $/kwh. That means that while it will be short range, if you have a vehicle that is doing tons of short trips between places it can quickly recharge, the ultracap can win on lifetime cost, and on wasted recharging time, since it can recharge in seconds, not hours. That’s why one potential application is the shuttle bus, which goes a mile between stops and recharges in a short time at every stop.
How do robocars change the equation? In some ways it’s positive, but mostly it’s not.

  • Robocars don’t mind going out of their way to charge, at least not too far out of their way. Humans hate this. So you don’t need to place charging stations conveniently, and you can have a smaller number of them.
  • Robocars don’t care how long it takes to charge. The only issue is they are not available for service while charging. Humans on the other hand won’t tolerate much wait at all.
  • Robocars will eventually often be small single-person vehicles with very low weight compared to today’s cars. In fact, most of their weight might be battery if they are electric.
  • Users don’t care about the power train of a taxi or its energy source. Only the fleet manager cares, and the fleet manager is all about cost and efficiency and almost nothing else.

Now we see the bad news for the ultracap. It’s main advantage is the fast recharge time. Robots don’t care about that much at all. Instead, the fleet manager does care about the downtime, but the cost of the downtime is not that high. You need more vehicles the more downtime you have during peak loads, but as vehicles wear out by the km, not the year, the only costs for having more vehicles are the interest rate and the storage (parking) cost.

The interest cost is very low today. Consider a $20,000 vehicle. At 3%, you’re paying 7 cents/hour in interest. So 4 hours of recharge downtime (only at peak times when you need every vehicle) doesn’t cost very much, certainly not as much as the extra cost of an ultracap. The cost of parking is actually much more, but will be quite low in the beginning because these vehicles can park wherever they can get the best rate and the best rate is usually zero somewhere not too far away. That may change in time, but it’s how it is today in most places.

In addition to the high cost, the ultracap comes with two other big downsides. The first is the weight and bulk. Especially when a vehicle is small and its weight comes mostly from its battery, adding 200kg of battery actually backfires; you get diminishing returns on adding more in such vehicles. The other big downside is the short range. Even with the fast recharge time, you would have to limit these vehicles to doing only short cab hops in urban spaces of just a few miles, sending them off after just a few rides to get a recharge.

A third disadvantage is you need a special charging station to quick charge an ultracap. While level 2 electric car charging stations are in the 7-10kw range, and rapid chargers are in the 50kw-100kw range, ultracap chargers want to be in the megawatt or more range, and that’s a much more serious proposition, and a lot more work to build them.

The fact that robocars don’t need fast refuelling in convenient locations opens up all sorts of energy options. Natural gas, hydrogen, special biofuels and electricity all become practical even with gasoline’s 100-year headstart when it comes to deployment and infrastructure, and even sometimes in competition with gasoline’s incredible convenience and energy density. But what the robocar brings is not always a boon to every different form of energy storage.

Still, for convenience, the first robocars will probably be gasoline and electric.

This article originally appeared on robocars.com.



tags: , ,


Brad Templeton, Robocars.com is an EFF board member, Singularity U faculty, a self-driving car consultant, and entrepreneur.
Brad Templeton, Robocars.com is an EFF board member, Singularity U faculty, a self-driving car consultant, and entrepreneur.





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence