Robohub.org
 

Re-righting the food pyramid through robotics


by
07 December 2012



share this:


 

There are two main reasons why meat, dairy, and cereal products have come to dominate the dietary landscape. First, humans have a natural taste for animal-sourced foods, a taste we’ve gradually become more accustomed to indulging as our prowess in hunting increased, a skill which then became less relevant with the domestication of herds and flocks. But secondly, and for the purpose of explaining the current situation, more importantly, the combination of cheap oil and mechanized agriculture has made grain production so inexpensive that the use of grain in animal feed competes with its use in the production of ethanol for fuel.

 

The other side of that coin is that, so far, mechanization has mainly been applied to grain, soya, and a small selection of other crops that can easily be handled in bulk. Meanwhile, until quite recently, crops like strawberries, tomatoes, and asparagus had to be harvested by hand, making them relatively expensive. Mechanical handling is now becoming available for the more common fruits and vegetables. On the other hand, these crops are also typically heavily dosed with synthetic fertilizers and pesticides.

 

But mechanization as currently practiced comes with a significant downside. The machines, or at least the tractors that pull them, tend to be large and heavy, compacting the soil over which they pass, which must then be tilled to reloosen it, which kicks up some dust and exposes the soil surface to further erosion, as well as over-aerating the top few inches of soil, resulting in accelerated decay of organic material. The loss of organic material reduces the soil’s capacity to absorb and hold water, making production more dependent upon predictable weather, something we can no longer count on.

 

The solution to all of these problems is to replace conventional mechanical approaches with smart machines, robots, that get their energy from sun and wind, use techniques compatible with no-till polyculture incorporating perennials, and operate autonomously. Using this approach, biological methods could supplant most use of synthetic fertilizers and pesticides, and to the extent these were needed they could be applied sparingly, with precision. This approach would also act to level the pricing of fruit and vegetables as compared with meat, dairy, and grains, making a more balanced diet more affordable.

 

One additional benefit of the robotic approach is that it could just as easily make room for native flora and fauna, making the same land serve both as native habitat and for crop production. Beyond a certain level of sensory and mechanical sophistication, it becomes a matter of programming to take such factors into account.




John Payne





Related posts :



A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence