Robohub.org
 

Real-time behavior-based control


by
22 February 2011



share this:

Using behavior-based controllers, robots are theoretically able to rapidly react to their environment. This is typically done by having several behaviors, that map sensory input to actuator commands, run concurrently on the robot. A hierarchy then determines which behavior has access to the actuators.

If your robot needs to navigate a room, you might implement a trajectory planning behavior and a simple obstacle avoidance behavior with high priority to avoid any accidents. If the robot only has one processor, then both behaviors might run in “parallel” as threads. However, if one of your behaviors entails heavy processing, it might hog all the CPU power and impeach the high-priority behaviors from being executed at the right time. In the example above, this might lead to the robot crashing into obstacles. One solution consists in increasing the processing power although this might be incompatible with the size and cost constraints of your robot.

As an alternative, Woolley et al. propose a “Real-Time Unified Behavior Framework” to cope with real-time constraints in behavior-based systems. The framework allows time-critical reactive behaviors to be run at a desired time and in a periodic fashion. Instead, demanding processing tasks that are not critical to the safe operation of the robot are executed whenever possible. This is done by moving time-critical behaviors out of the Linux environment (which can not execute real-time tasks) and into an environment managed by a real-time scheduler.

Real-time tasks bypass Linux and run on the real-time scheduler.

Experiments were conducted on a Pioneer P2-AT8 robot equipped with 16 sonars, odometry, a SICK LMS200 laser scanner and a 1294 camera. The robot was programed to follow an orange cone through a hallway while avoiding obstacles. Results show that the robot was able to meet hard real-time constraints while running computationally demanding processes including FastSLAM.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.

Robot Talk Episode 140 – Robot balance and agility, with Amir Patel

  16 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Amir Patel from University College London about designing robots with the agility and manoeuvrability of a cheetah.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

and   14 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

Robot Talk Episode 139 – Advanced robot hearing, with Christine Evers

  09 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Christine Evers from University of Southampton about helping robots understand the world around them through sound.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence