Robohub.org
 

Video: Quadrocopter learns from its mistakes, perfects air racing


by
08 November 2012



share this:

First person view of the quadrocopter racing through a pylon slalom course.

Manual programming of robots only gets you so far. And, as you can see in the video, for quadrocopters that’s not very far at all (see the “Without Learning” part starting at 1:30):

On its first try to navigate the obstacle course, the flying robot attempts to navigate based on a pre-computed flight path. The path is derived using a basic mathematical (“first principles”) model. But quadrocopters have complex aerodynamics – the force produced by the propellers changes depending on the vehicle’s velocity and orientation, and thus the actual amount of force produced is quite different from what the simple math describes.

What’s worse, these flying vehicles use soft propellers for safety, which bend differently depending on how much thrust is applied and wear rapidly with use (and even more rapidly when crashing).

Even with continuous feedback on the robot’s position from the motion capture system, manually programming the robots with a control sequence that takes all these imperfections into account is impractical.

 

My colleague Angela Schoellig and the Flying Machine Arena team here at ETH Zurich have now developed and implemented algorithms that allow their flying robots to race through an obstacle parcours – and learn to improve their performance.

Here is how Angela described the process to me:

The learning algorithm is applied to a quadrocopter that is guided by an underlying trajectory-following controller. The result of the learning is an adapted input trajectory in terms of desired positions. The algorithm has been equipped with several unique features that are particularly important when pushing vehicles to the limits of their dynamic capabilities and when applying the learning algorithm to increasingly complex systems:

1. We designed an input update rule that explicitly takes actuation and sensor limits into account by solving a constrained convex problem.
2. We developed an identification routine that extracts the model data required by the learning algorithm from a numerical simulation of the vehicle dynamics. That is, the algorithm is applicable to systems for which an analytical model is difficult (or impossible) to derive.
3. We combined model data and experimental data, traditional filtering methods and state-of-the- art optimization techniques to achieve an effective and computationally efficient learning strategy that achieves convergence in less than ten iterations.

 

The result is a robot that learns and improves each time it tries to perform a task.

In this example the robot races through a pylon parcours, calling to mind air races, such as the Red Bull Air Racing Championships or the Reno Air Races – except that there are no human pilots that spent their life learning to fly – here it’s robots doing the learning. And they are efficient, taking less than 10 training sessions to find the optimal steering commands!

Moreover, the learning algorithms are not specific to slalom racing, they can be used to learn other tasks. As Angela points out:

Our goal is to enable autonomous systems – such as the quadrocopter in the video – to ‘learn’ the way humans do: through practice.

 

The videos below show how learning algorithms can be used for other robotic tasks:

 

 

 

 

Full disclosure: Angela and the Flying Machine Arena team work in the same lab as I. Also, I’m working on RoboEarth, trying to allow robot learning on a much larger scale.

 



tags: , , , , , , , ,


Markus Waibel is a Co-Founder and COO of Verity Studios AG, Co-Founder of Robohub and the ROBOTS Podcast.
Markus Waibel is a Co-Founder and COO of Verity Studios AG, Co-Founder of Robohub and the ROBOTS Podcast.





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence