Robohub.org
 

Adaptive bipedal walking on slopes


by
06 September 2010



share this:

Imagine walking on a flat surface with your eyes blinded. If the slope below your feet changes, you’ll most likely change your posture to keep moving. To explain this, an idea from the 1950s says that we can predict the sensation that will be produced by a motor command sent by our central nervous system. We can therefore tell apart sensations that are due to our own motion and sensations due to external stimuli. When the expected sensation doesn’t match the sensory input, we change our behavior to compensate.

In work by Schröder-Schetelig et al., a robotic walker uses this idea to stay on its two feet. More precisely, the robot uses a neural network (which is a type of controller) to send commands to hip-joint and knee-joint motors such that the robot is able to walk on flat terrain. These motor commands are then copied (efference copy) and fed to a second neural network that captures the internal model of the robot. This model predicts the acceleration the robot should feel given its motor command and current state. If the acceleration is larger than expected, the robot is probably going downhill and should lean back to slow down. Likewise, if the acceleration is lower, the robot is going uphill and should lean forward. Leaning backward and forward is performed by moving a mass that represents the upper body of the robot and is controlled by a third neural network that takes as an input the robot’s predicted acceleration and the measured acceleration given by an accelerometer.

Experiments shown in the video below were conducted on Runbot, a 23cm bipedal robot that is physically constrained to a circular path of 1m radius and can not perform sideway movements. Results show the robot successfully climbing a changing slope.

In the future, Schröder-Schetelig et al. hope to refine the internal model of Runbot, make it climb even steeper slopes and adapt to new and unforeseen environments.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence