Robohub.org
 

New algorithm flies drones faster than human racing pilots


by
22 July 2021



share this:

To be useful, drones need to be quick. Because of their limited battery life they must complete whatever task they have – searching for survivors on a disaster site, inspecting a building, delivering cargo – in the shortest possible time. And they may have to do it by going through a series of waypoints like windows, rooms, or specific locations to inspect, adopting the best trajectory and the right acceleration or deceleration at each segment.

Algorithm outperforms professional pilots

The best human drone pilots are very good at doing this and have so far always outperformed autonomous systems in drone racing. Now, a research group at the University of Zurich (UZH) has created an algorithm that can find the quickest trajectory to guide a quadrotor – a drone with four propellers – through a series of waypoints on a circuit. “Our drone beat the fastest lap of two world-class human pilots on an experimental race track”, says Davide Scaramuzza, who heads the Robotics and Perception Group at UZH and the Rescue Robotics Grand Challenge of the NCCR Robotics, which funded the research.

“The novelty of the algorithm is that it is the first to generate time-optimal trajectories that fully consider the drones’ limitations”, says Scaramuzza. Previous works relied on simplifications of either the quadrotor system or the description of the flight path, and thus they were sub-optimal. “The key idea is, rather than assigning sections of the flight path to specific waypoints, that our algorithm just tells the drone to pass through all waypoints, but not how or when to do that”, adds Philipp Foehn, PhD student and first author of the paper in Science Robotics.

External cameras provide position information in real-time

The researchers had the algorithm and two human pilots fly the same quadrotor through a race circuit. They employed external cameras to precisely capture the motion of the drones and – in the case of the autonomous drone – to give real-time information to the algorithm on where the drone was at any moment. To ensure a fair comparison, the human pilots were given the opportunity to train on the circuit before the race. But the algorithm won: all its laps were faster than the human ones, and the performance was more consistent. This is not surprising, because once the algorithm has found the best trajectory it can reproduce it faithfully many times, unlike human pilots.

Before commercial applications, the algorithm will need to become less computationally demanding, as it now takes up to an hour for the computer to calculate the time-optimal trajectory for the drone. Also, at the moment, the drone relies on external cameras to compute where it was at any moment. In future work, the scientists want to use onboard cameras. But the demonstration that an autonomous drone can in principle fly faster than human pilots is promising. “This algorithm can have huge applications in package delivery with drones, inspection, search and rescue, and more”, says Scaramuzza.

Literature

Philipp Foehn, Angel Romero, Davide Scaramuzza. “Time-Optimal Planning for Quadrotor Waypoint Flight”. Science Robotics. July 21, 2021. DOI: 10.1126/scirobotics.abh1221



tags: ,


NCCR Robotics





Related posts :



Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence