Robohub.org
 

What do teachers mean when they say ‘do it like me’?


by
17 February 2014



share this:

This post is part of our ongoing efforts to make the latest papers in robotics accessible to a general audience.

Teaching robots to do tasks is useful, and teaching them in an easy and non time-intensive way is even more useful. The algorithm TRIC presented in the latest paper in Autonomous Robots allows robots to observe a few motions from a human teacher, understand the essence of what the demonstration is, and then repeat it and adapt it to new situations.

Robots should learn to move and do useful tasks in order to be helpful to humans. However, tasks that are easy for a human, like grasping a glass, are not so obvious for a machine. Programming a robot requires time and work. Instead, what if the robot could watch the human and learn why the human did what he did, and in what way?

This is a task that we people do all the time. Imagine you are playing tennis and the teacher says ‘do the forehand like me’ and then shows an example. How should the student understand this? Should he move his fingers, or his elbow? Should he watch the ball, the racket, the ground, or the net? All these possible reference points can be described with numbers. The algorithm presented in this paper, called Task Space Retrieval Using Inverse Feedback Control (TRIC), can help a robot learn the important aspects of a demonstrated motion. Afterwards, the robot should be able to reproduce the moves like an expert, even if the task changes slightly.

The algorithm was successfully tested in simulation on various grasping and manipulation tasks. This figure shows one of these tasks in which a robot hand must approach a box and open the cover. The robot was shown 10 sets of trajectories from a simulated teacher. After training, it was then asked to open a series of boxes where the box is moved, rotated, or of a different size. Overall, TRIC was very good on these scenarios with 24 successes out of 25 tries.

For more information, you can read the paper Discovering relevant task spaces using inverse feedback control (N. Jetchev and M. Toussaint, Autonomous Robots – Springer US, Feb 2014) or ask questions below!



tags: ,


Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).
Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence