Robohub.org
 

What do teachers mean when they say ‘do it like me’?


by
17 February 2014



share this:

This post is part of our ongoing efforts to make the latest papers in robotics accessible to a general audience.

Teaching robots to do tasks is useful, and teaching them in an easy and non time-intensive way is even more useful. The algorithm TRIC presented in the latest paper in Autonomous Robots allows robots to observe a few motions from a human teacher, understand the essence of what the demonstration is, and then repeat it and adapt it to new situations.

Robots should learn to move and do useful tasks in order to be helpful to humans. However, tasks that are easy for a human, like grasping a glass, are not so obvious for a machine. Programming a robot requires time and work. Instead, what if the robot could watch the human and learn why the human did what he did, and in what way?

This is a task that we people do all the time. Imagine you are playing tennis and the teacher says ‘do the forehand like me’ and then shows an example. How should the student understand this? Should he move his fingers, or his elbow? Should he watch the ball, the racket, the ground, or the net? All these possible reference points can be described with numbers. The algorithm presented in this paper, called Task Space Retrieval Using Inverse Feedback Control (TRIC), can help a robot learn the important aspects of a demonstrated motion. Afterwards, the robot should be able to reproduce the moves like an expert, even if the task changes slightly.

The algorithm was successfully tested in simulation on various grasping and manipulation tasks. This figure shows one of these tasks in which a robot hand must approach a box and open the cover. The robot was shown 10 sets of trajectories from a simulated teacher. After training, it was then asked to open a series of boxes where the box is moved, rotated, or of a different size. Overall, TRIC was very good on these scenarios with 24 successes out of 25 tries.

For more information, you can read the paper Discovering relevant task spaces using inverse feedback control (N. Jetchev and M. Toussaint, Autonomous Robots – Springer US, Feb 2014) or ask questions below!



tags: ,


Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).
Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence