Robohub.org
 

Why use robots, round 4


by
17 September 2007



share this:

Machines can work continuously, 24/7. Doing so would require power enough to last through the night and either artificial lighting or night vision, and some operations are probably best left for daylight, but they needn’t stop working when the sun goes down. This means that a single machine can manage a greater area than if it were only operating during the day. It’s also useful in limiting damage by deer, which usually come around at night.

 

Machines can make use of senses we don’t possess or which are more sensitive than those we do. Their vision can extend into the infrared and ultraviolet, as well as more finely dividing the visible spectrum, and can also be more detailed and quicker (tracking faster motion) or more accurately track changes over a period of days or weeks. Their hearing can be far sharper than our own. They can be equipped with chemical sensitivity capable of distinguishing between substances we would group together under broad categories, like sweet or acrid. They can also be equipped with radar and sonar, laser ranging and scanning, accurate measures of temperature, humidity, and insolation, and their manipulators can be made to gauge and control pressure more accurately than do our own fingertips. In short, machines can have far better data available to them than would an unassisted human gardener in the same position.

 

Machines can also correlate information very quickly, drawing on recorded data and expert systems to make decisions, and applying heuristics to experience to refine those expert systems. A machine might reasonably be expected to identify to species every plant within the area it was tending, to know whether they were considered crops, benign, weeds, or threatened or endangered, and treat them accordingly. It might be expected to predict to an accuracy of a few days when it could harvest a particular crop, and estimate to within a few percentage points the quantity that could be expected, barring a calamity such as hail or a tornado. It might also be expected to adapt a cropping plan to market conditions, for example putting in more of some crop that hadn’t done well elsewhere and would therefore be in demand.

 

Machines can whisper to each other, via radio links, over distances far greater than a human shout will carry. They can coordinate their activities precisely, cooperating toward a common goal without so much as a hiccup.

 

Machines can, as has recently been demonstrated by DARPA’s autonomous vehicle competitions, operate in an uncontrolled environment.

 

The foregoing is intended as a glimpse of how it might work once development was far along. It presumes a mature technology, some of the pieces of which aren’t yet available or only just beginning to be so.

 

Reposted from Cultibotics.



tags: , , ,


John Payne





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence