Robohub.org
 

The world’s first mind-controlled implantable robotic arm


by
15 November 2012



share this:

The world’s first implantable robotic arm controlled by thoughts is developed by researcher Max Ortiz Catalan, at the Department of Signals and Systems, Chalmers University of Technology in Gothenburg, Sweden, and at Integrum AB. This winter the first patients will be operated with this revolutionary device.

Every year thousands of people around the world lose an arm or a leg. With the new technology patients will get a brand new and mind controlled body part.
Ever since the 1960s amputees have been using prostheses that are controlled by electrical impulses in the muscles, but the technology for controlling prostheses has not evolved much since then. For example there are very advanced electric prosthetic hands, but they are not used as much because they are so difficult to control. All movements must be pre-programmed, says Max Ortiz Catalan. It’s like having a Ferrari without a steering wheel. The researchers at Chalmers have therefore developed a new control system from scratch. The usual prostheses are fixed directly to the skin surface of the amputated stump, which is so uncomfortable that only 50 percent of the amputees are willing to use them. In this research project the prosthesis is anchored directly into the human skeleton with the world-famous Brånemark screw, so-called osseointegration. Osseointegration is crucial by employing implantable electrodes permanently accessible through the Osseointegrated Human-Machine Gateway (OHMG). The OHMG is a bidirectional interface that allows permanent communication into the human body, and it is the key development of this project.

Mind controlled prosthesis
To obtain the electrical impulses to control the prosthesis electrodes has been previously attached outside the body to the skin. The problem is that the impulse change when the skin is involved, since the electrodes are then moved to another position. The impulses are also affected if the patient sweats. In this project, researchers are implanting electrodes directly on the nerves inside the body. The body protects the electrodes and electrical impulses are more stable. Osseointegration is used to receive signals from within the body to the prosthesis. The electrical impulses from nerves in the arm stump are caught up in the OHMG interface inside the titanium screw, which enhances and transfers impulses to all parts of the prosthesis. It allows a patient to control the prosthesis in a more natural and intuitive way.

From the lab to the patients
Many of the patients in the project have been amputated for more than ten years and have never touched their hands during that time, says Max Ortiz Catalan. When they came to the lab they had to test a virtual reality environment to evaluate the researchers technical algorithms. They got electrodes on their amputation stumps so that they could control more advanced prosthesis. This made the patients very enthusiastic. By testing the method on some patients, the researchers could show that the method works, and will now go further with clinical trials and development of the method.

Check out the video demo below of controlling an arm in a virtual environment.




Wolfgang Heller





Related posts :



Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

and   08 Oct 2025
Zahra tells us more about her research on wearable technology.

Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.

Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence