Robohub.org
 

Adaptive walking using oscillators


by
10 November 2010



share this:

Animal walking is thought to be driven by rhythmic signals sent through the spinal cord. These signals are translated to motions of the limbs. For a bipedal walker, such patterns would force leg swings and foot contacts to be alternated so as to achieve stable walking. By using similar mechanisms, roboticists hope to generate walking gates that do not require any complex modeling or computation.

Along these lines, Aoi et al. consider stable walking with a five-link biped robot. The links represent the femur and tibia of both legs and torso as shown in the video below. The robot is driven by a Central Pattern Generator (CPG) that uses one oscillator to generate the rhythmic signals. As a first step, they investigate what parameters lead to stable walking when no sensory feedback is used (open-loop). Important parameters include walking speed, knee amplitude, and distribution of mass. In a second step, the robot is able to detect when its foot hits the ground and use that information to reset the oscillator. By reacting to its environment, the robot is therefor able to adapt its walking and achieve better stability. Finally, controller parameters for the walker are optimized to fully exploit the interactions between robot dynamics, oscillator dynamics and the environment.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence