Robohub.org
 

Adaptive walking using oscillators


by
10 November 2010



share this:

Animal walking is thought to be driven by rhythmic signals sent through the spinal cord. These signals are translated to motions of the limbs. For a bipedal walker, such patterns would force leg swings and foot contacts to be alternated so as to achieve stable walking. By using similar mechanisms, roboticists hope to generate walking gates that do not require any complex modeling or computation.

Along these lines, Aoi et al. consider stable walking with a five-link biped robot. The links represent the femur and tibia of both legs and torso as shown in the video below. The robot is driven by a Central Pattern Generator (CPG) that uses one oscillator to generate the rhythmic signals. As a first step, they investigate what parameters lead to stable walking when no sensory feedback is used (open-loop). Important parameters include walking speed, knee amplitude, and distribution of mass. In a second step, the robot is able to detect when its foot hits the ground and use that information to reset the oscillator. By reacting to its environment, the robot is therefor able to adapt its walking and achieve better stability. Finally, controller parameters for the walker are optimized to fully exploit the interactions between robot dynamics, oscillator dynamics and the environment.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.

Robot Talk Episode 140 – Robot balance and agility, with Amir Patel

  16 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Amir Patel from University College London about designing robots with the agility and manoeuvrability of a cheetah.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

and   14 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

Robot Talk Episode 139 – Advanced robot hearing, with Christine Evers

  09 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Christine Evers from University of Southampton about helping robots understand the world around them through sound.

Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence