Robohub.org
 

Alec Jacobson: Geometry Processing in The Wild | CMU RI Seminar


by
11 February 2019



share this:

Link to video on YouTube

Abstract: “Geometric data abounds, but our algorithms for geometry processing are failing. Whether from medical imagery, free-form architecture, self-driving cars, or 3D-printed parts, geometric data is often messy, riddled with “defects” that cause algorithms to crash or behave unpredictably. The traditional philosophy assumes geometry is given with 100% certainty and that algorithms can use whatever discretization is most convenient. As a result, geometric pipelines are leaky patchworks requiring esoteric training and involving many different people. Instead, we adapt fundamental mathematics to work directly on messy geometric data. As an archetypical example, I will discuss how to generalize the classic formula for determining the inside from the outside of a curve to messy representations of a 3D surface. This work helps keep the geometry processing pipeline flowing, as validated on our large-scale geometry benchmarks. Our long term vision is to replace the current leaky geometry processing pipeline with a robust workflow where processing operates directly on real geometric data found “in the wild”. To do this, we need to rethink how algorithms should gracefully degrade when confronted with imprecision and uncertainty. Our most recent work on differentiable rendering and geometry-based adversarial attacks on image classification demonstrates the potential power of this philosophy.”




John Payne





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence