Robohub.org
 

Alec Jacobson: Geometry Processing in The Wild | CMU RI Seminar


by
11 February 2019



share this:

Link to video on YouTube

Abstract: “Geometric data abounds, but our algorithms for geometry processing are failing. Whether from medical imagery, free-form architecture, self-driving cars, or 3D-printed parts, geometric data is often messy, riddled with “defects” that cause algorithms to crash or behave unpredictably. The traditional philosophy assumes geometry is given with 100% certainty and that algorithms can use whatever discretization is most convenient. As a result, geometric pipelines are leaky patchworks requiring esoteric training and involving many different people. Instead, we adapt fundamental mathematics to work directly on messy geometric data. As an archetypical example, I will discuss how to generalize the classic formula for determining the inside from the outside of a curve to messy representations of a 3D surface. This work helps keep the geometry processing pipeline flowing, as validated on our large-scale geometry benchmarks. Our long term vision is to replace the current leaky geometry processing pipeline with a robust workflow where processing operates directly on real geometric data found “in the wild”. To do this, we need to rethink how algorithms should gracefully degrade when confronted with imprecision and uncertainty. Our most recent work on differentiable rendering and geometry-based adversarial attacks on image classification demonstrates the potential power of this philosophy.”




John Payne





Related posts :



Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.

Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence