Robohub.org
 

Amir Barati Farimani: Creative Robots with Deep Reinforcement Learning | CMU RI Seminar


by
06 April 2019



share this:

Link to video on YouTube

“Recent advances in Deep Reinforcement Learning (DRL) algorithms provided us with the possibility of adding intelligence to robots. Recently, we have been applying a variety of DRL algorithms to the tasks that modern control theory may not be able to solve. We observed intriguing creativity from robots when they are constrained in reaching a certain goal. To introduce the topic, I will talk about some of the experiments that are being done to show the capabilities and limitations of modern Deep Reinforcement Learning approaches, including those of sparse rewards and continuous observations and action spaces. An in depth explanation of how Hindsight Experience Replay (HER) has been used to obtain dense results from sparse environments when using Deep Deterministic Policy Gradient (DDPG) agents will be given. I will then show how we have modified some of these experiments to have a deeper understanding of the intelligence we are developing, and what are the baseline environmental characteristics that make the robots achieve higher levels of creativity during their problem solving scenarios.”




John Payne





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence