Robohub.org
 

Artificial cerebellum


by
15 July 2012



share this:

Researchers in the Department of Computer Architecture and Technology, University of Granada, and in the Department of Computer Architecture and Electronics, University of Almería, have developed a biologically-inspired adaptive microcircuit which functions as an artificial cerebellum, controlling a robotic arm with human-like precision.

To date, although robot designers have achieved very precise movements, such movements are performed at very high speed, require strong forces and are power consuming. This approach cannot be applied to robots that interact with humans, as a malfunction might be potentially dangerous. To solve this challenge, University of Granada researchers have implemented a new cerebellar spiking model that adapts to corrections and stores their sensorial effects; in addition, it records motor commands to predict the action or movement to be performed by the robotic arm. This cerebellar model allows the user to articulate a state-of-the-art robotic arm with extraordinary mobility.

(Source: Canal UGR)



tags:


John Payne





Related posts :



Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

and   13 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

Robot Talk Episode 139 – Advanced robot hearing, with Christine Evers

  09 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Christine Evers from University of Southampton about helping robots understand the world around them through sound.

Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence