Robohub.org
 

At the forefront of building with biology

by
28 June 2022



share this:

Ritu Raman, the d’Arbeloff Career Development Assistant Professor of Mechanical Engineering, focuses on building with biology, using living cells. Photo: David Sella

By Daniel de Wolff | MIT Industrial Liaison Program

It would seem that engineering is in Ritu Raman’s blood. Her mother is a chemical engineer, her father is a mechanical engineer, and her grandfather is a civil engineer. A common thread among her childhood experiences was witnessing firsthand the beneficial impact that engineering careers could have on communities. One of her earliest memories is watching her parents build communication towers to connect the rural villages of Kenya to the global infrastructure. She recalls the excitement she felt watching the emergence of a physical manifestation of innovation that would have a lasting positive impact on the community.  

Raman is, as she puts it, “a mechanical engineer through and through.” She earned her BS, MS, and PhD in mechanical engineering. Her postdoc at MIT was funded by a L’Oréal USA for Women in Science Fellowship and a Ford Foundation Fellowship from the National Academies of Sciences Engineering and Medicine.

Today, Ritu Raman leads the Raman Lab and is an assistant professor in the Department of Mechanical Engineering. But Raman is not tied to traditional notions of what mechanical engineers should be building or the materials typically associated with the field. “As a mechanical engineer, I’ve pushed back against the idea that people in my field only build cars and rockets from metals, polymers, and ceramics. I’m interested in building with biology, with living cells,” she says.

Our machines, from our phones to our cars, are designed with very specific purposes. And they aren’t cheap. But a dropped phone or a crashed car could mean the end of it, or at the very least an expensive repair bill. For the most part, that isn’t the case with our bodies. Biological materials have an unparalleled ability to sense, process, and respond to their environment in real-time. “As humans, if we cut our skin or if we fall, we’re able to heal,” says Raman. “So, I started wondering, ‘Why aren’t engineers building with the materials that have these dynamically responsive capabilities?’”

These days, Raman is focused on building actuators (devices that provide movement) powered by neurons and skeletal muscle that can teach us more about how we move and how we navigate the world. Specifically, she’s creating millimeter-scale models of skeletal muscle controlled by the motor neurons that help us plan and execute movement as well as the sensory neurons that tell us how to respond to dynamic changes in our environment.

Eventually, her actuators may guide the way to building better robots. Today, even our most advanced robots are a far cry from being able to reproduce human motion — our ability to run, leap, pivot on a dime, and change direction. But bioengineered muscle made in Raman’s lab has the potential to create robots that are more dynamically responsive to their environments.



tags:


MIT News





Related posts :



Resilient bug-sized robots keep flying even after wing damage

New repair techniques enable microscale robots to recover flight performance after suffering severe damage to the artificial muscles that power their wings.
23 March 2023, by

How drones for organ transportation are changing the healthcare industry

The healthcare drone industry has witnessed a dramatic surge in the last couple of years. In 2020, the market grew 30% and is expected to grow from $254 million in 2021 to $1,5 billion in 2028.
21 March 2023, by

Robotic bees and roots offer hope of healthier environment and sufficient food

Miniature robots that mimic living organisms are being developed to explore and support real-life ecosystems.
18 March 2023, by

Robot Talk Episode 41 – Alessandra Rossi

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Alessandra Rossi from the University of Naples all about social robotics, theory of mind, and robots playing football.
17 March 2023, by

Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots

Robotic parts could be assembled into nimble spider bots for exploring lava tubes or heavy-duty elephant bots for transporting solar panels.
14 March 2023, by

Learning to compute through art

“Introduction to Physical Computing for Artists” at the MIT Student Art Association teaches students to use circuits, wiring, motors, sensors, and displays by developing their own kinetic artworks.
12 March 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association