Robohub.org
 

Building topological maps to get around


by
31 August 2011



share this:

Service robots entering our homes will need to map their environment and figure out their location as they move around. Previous articles discussed Self-Localization And Mapping (SLAM) approaches that give accurate measurements regarding the location of the robot and objects in the environment. Such so called “metric” approaches can be useful for robot tasks that require high accuracy, such as placing a cup in an exact location.

Instead, the “topological” approach represents the environment as places (nodes) and paths between places as edges. Robots can localize by finding the node where they are currently positioned. The advantage of this approach is that large amounts of data can be stored as nodes and edges and noisy sensors can be used to grossly map the environment. Furthermore, for human robot interactions it is sometimes more useful for the robot to know in what room it is (e.g. kitchen node) rather than a cartesian coordinate.

Following this idea, Choi et al. present a method for autonomous topological modeling and localization in home environments using only low-cost sonar sensors. Experiments were conducted using a Pioneer 3-DX differential drive robot (see picture below) equipped with 12 Murata MA40B8 sonar sensors in a 11.4 m × 8.7 m home environment of several rooms containing items of furniture.

As a first step, the robot was manually guided along an arbitrary path at an average speed of about 0.15 m/s while acquiring sensor data at a rate of 4 Hz. Based on the sonar data, the robot marks a grid map with regions that have obstacles and those that don’t. The grid map is then partitioned into several convex subregions that represent the nodes in the environment. The result is a topological map as can be seen below. As a second experiment, the robot is again guided through the environment and asked to identify its node location, even in situations where furniture has been moved around. Results show that the proposed method provides reliable modeling and localization using sparse and noisy sonar data.

Experimental results of the autonomous topological modeling process: autonomous subregion extractions (each subregion is a different color) and the corresponding topological models.

Although the proposed method was developed for sonar sensors, it can also be applied to any type of sensor that generates grid maps (e.g., laser range finders or stereo vision sensors).




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence