Robohub.org
 

Building topological maps to get around


by
31 August 2011



share this:

Service robots entering our homes will need to map their environment and figure out their location as they move around. Previous articles discussed Self-Localization And Mapping (SLAM) approaches that give accurate measurements regarding the location of the robot and objects in the environment. Such so called “metric” approaches can be useful for robot tasks that require high accuracy, such as placing a cup in an exact location.

Instead, the “topological” approach represents the environment as places (nodes) and paths between places as edges. Robots can localize by finding the node where they are currently positioned. The advantage of this approach is that large amounts of data can be stored as nodes and edges and noisy sensors can be used to grossly map the environment. Furthermore, for human robot interactions it is sometimes more useful for the robot to know in what room it is (e.g. kitchen node) rather than a cartesian coordinate.

Following this idea, Choi et al. present a method for autonomous topological modeling and localization in home environments using only low-cost sonar sensors. Experiments were conducted using a Pioneer 3-DX differential drive robot (see picture below) equipped with 12 Murata MA40B8 sonar sensors in a 11.4 m × 8.7 m home environment of several rooms containing items of furniture.

As a first step, the robot was manually guided along an arbitrary path at an average speed of about 0.15 m/s while acquiring sensor data at a rate of 4 Hz. Based on the sonar data, the robot marks a grid map with regions that have obstacles and those that don’t. The grid map is then partitioned into several convex subregions that represent the nodes in the environment. The result is a topological map as can be seen below. As a second experiment, the robot is again guided through the environment and asked to identify its node location, even in situations where furniture has been moved around. Results show that the proposed method provides reliable modeling and localization using sparse and noisy sonar data.

Experimental results of the autonomous topological modeling process: autonomous subregion extractions (each subregion is a different color) and the corresponding topological models.

Although the proposed method was developed for sonar sensors, it can also be applied to any type of sensor that generates grid maps (e.g., laser range finders or stereo vision sensors).




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

and   15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

and   01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

RoboCupRescue: an interview with Adam Jacoff

and   25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence