California publishes robocar intervention reports: Google/Waymo vastly outpaces competition

08 February 2017

share this:

California published its summary of all the reports submitted by vendors testing robocars in the state. You can read the individual reports. They are interesting, but several other outlines have created summaries of the reports calculating things like the number of interventions per mile. On these numbers, Google’s lead is extreme. Of over 600,000 autonomous miles driven by the various teams, Google/Waymo was 97% of them — in other words, 30 times as much as everybody else put together.

Beyond that, their rate of miles between disengagements (around 5,000 — a 4x improvement over 2015) is one or two orders of magnitude better than the others, and in fact for most of the others, they have so few miles that you can’t even produce a meaningful number. Only Cruise, Nissan and Delphi can claim enough miles to really tell.

Tesla is a notable entry. In 2015 they reported driving zero miles, and in 2016 they did report a very small number of miles with tons of disengagements from software failures (one very 3 miles.) That’s because Tesla’s autopilot is not a robocar system, and so miles driven by it are not counted. Tesla’s numbers must come from small scale tests of a more experimental vehicle. This is very much not in line with Tesla’s claim that it will release full autonomy features for their cars fairly soon, and that they already have all the hardware needed for that to happen.

Unfortunately, you can’t easily compare these numbers:

  • Some companies are doing most of their testing on test tracks, and they do not need to report what happens there.
  • Companies have taken different interpretations of what needs to be reported. Most of Cruise’s disengagements are listed as “planned” but in theory those should not be listed in these reports. But they also don’t list the unplanned ones which should be there.
  • Delphi lists real causes and Nissan is very detailed as well. Others are less so.
  • Many teams test outside California, or even do most of their testing there. Waymo/Google actually tests a bunch outside California, making their numbers even bigger.
  • Cars drive all sorts of different roads. Urban streets with pedestrians are much harder than highway miles. The reports do list something about conditions but it takes a lot to compare apples to apples. (Apple is not one of the companies filing a report, BTW.)

One complication is that typically safety drivers are told to disengage if they have any doubts. It thus varies from driver to driver and company to company what “doubts” are and how to deal with them.

Google has said their approach is to test any disengagement in simulator, to find out what probably would have happened if the driver did not disengage. If there would have been a “contact” (accident) then Google considers that a real incident and those are rarer than is reported here. Many of the disengagements are when software detects faults with software or sensors. There, we do indeed have a problem, but like human beings who zone out, not all such failures will cause accidents or even safety issues. You want to get rid of all of them, to be sure, but if you are are trying to compare the safety of the systems to humans, it’s not easy to do.

It’s hard to figure out a good way to get comparable numbers from all teams. The new federal guidelines, while mostly terrible, contain an interesting rule that teams must provide their sensor logs for any incident. This will allow independent parties to compare incidents in a meaningful way, and possibly even run them all in simulator at some level.

It would be worthwhile for every team to be required to report incidents that would have caused accidents. That requires a good simulator, however, and it’s hard for the law to demand this of everybody.

tags: , , , , , ,

Brad Templeton, is an EFF board member, Singularity U faculty, a self-driving car consultant, and entrepreneur.
Brad Templeton, is an EFF board member, Singularity U faculty, a self-driving car consultant, and entrepreneur.

Related posts :

New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by



Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association