Robohub.org
 

Compliant actuator for 1DOF hopper


by
26 September 2011



share this:

For a long time, robots were seen as rigid machines driven by sturdy motors. This raised worries concerning the safety of people interacting with them. One option to make robots safer is to equip them with compliant actuators that can adapt to external forces, such as a human getting in the way. Note that most natural systems also rely on compliant actuators such as muscles that can store energy, thereby making them more efficient for tasks such as running or hopping.

Building on the potential of safe and energy efficient actuators, Vanderborght et al. propose a new type of actuator called MACCEPA 2.0 (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). As seen in the figure below, when the position of the profile disk (heart shape) is changed by a servomotor or the joint is bent, this causes the tendon that is guided over the profile to pull on the spring. To counteract the pulling force, a torque will be generated that depends on the shape of the profile. To change the compliance of the actuator, simply replace the profile by another shape. Similar to what happens in human legs, the stiffness of the actuator increases with joint flexion.

Working principle of the MACCEPA 2.0. Top: Bent position (generating torque). Middle: At equilibrium position (not generating torque). Bottom: Preloaded spring caused by rotating profile.

The actuator was demonstrated on the 1DOF hopping robot Chobino1D shown below. The spring is preloaded by turning the profile using a servomotor before releasing the tension for the jump. Using MACCEPA 2.0, the robot was able to jump much higher than a robot with a stiff actuator.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 128 – Making microrobots move, with Ali K. Hoshiar

  10 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Ali K. Hoshiar from University of Essex about how microrobots move and work together.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

and   08 Oct 2025
Zahra tells us more about her research on wearable technology.

Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.

Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence