Robohub.org
 

Compliant actuator for 1DOF hopper


by
26 September 2011



share this:

For a long time, robots were seen as rigid machines driven by sturdy motors. This raised worries concerning the safety of people interacting with them. One option to make robots safer is to equip them with compliant actuators that can adapt to external forces, such as a human getting in the way. Note that most natural systems also rely on compliant actuators such as muscles that can store energy, thereby making them more efficient for tasks such as running or hopping.

Building on the potential of safe and energy efficient actuators, Vanderborght et al. propose a new type of actuator called MACCEPA 2.0 (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator). As seen in the figure below, when the position of the profile disk (heart shape) is changed by a servomotor or the joint is bent, this causes the tendon that is guided over the profile to pull on the spring. To counteract the pulling force, a torque will be generated that depends on the shape of the profile. To change the compliance of the actuator, simply replace the profile by another shape. Similar to what happens in human legs, the stiffness of the actuator increases with joint flexion.

Working principle of the MACCEPA 2.0. Top: Bent position (generating torque). Middle: At equilibrium position (not generating torque). Bottom: Preloaded spring caused by rotating profile.

The actuator was demonstrated on the 1DOF hopping robot Chobino1D shown below. The spring is preloaded by turning the profile using a servomotor before releasing the tension for the jump. Using MACCEPA 2.0, the robot was able to jump much higher than a robot with a stiff actuator.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence