Robohub.org
 

Contour extraction for mapping


by
29 July 2010



share this:

To map their environment, robots typically collect large amounts of range and bearing measurements to walls around them. However, when using noisy sensors, additional efforts need to be done to extract a map from the recorded data points.

For this purpose, Altun et al. propose two algorithms for extracting smooth closed curves that compactly represent the environment without gaps. These curves are easier to use and store than the raw data points.

The first method fits active snake contours to the data as can be seen in the image below (left) while the second technique uses a neural network to generate a self-organized feature map of the environment (right). Particle swarm optimization is used to automatically tune the parameters of both algorithms.

In the bottom images, black dots represent the processed ultrasonic data, the blue curve is the curve fitted to this data using active snake contours or self-organized maps and the red curve is ground truth.

Experiments were conducted using the Nomad 200 robot equipped with three front ultrasonic sensors and a structured-light system. The robot was programmed to follow the walls of a small room while mapping the environment.

Results show that active snake contours perform better because they are able to discard outliers in the data and match angles and edges more precisely than the self-organized map.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

Robot Talk Episode 115 – Robot dogs working in industry, with Benjamin Mottis

  28 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Benjamin Mottis from ANYbotics about deploying their four-legged ANYmal robot in a variety of industries.

Robot Talk Episode 114 – Reducing waste with robotics, with Josie Gotz

  21 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Josie Gotz from the Manufacturing Technology Centre about robotics for material recovery, reuse and recycling.

Robot Talk Episode 113 – Soft robotic hands, with Kaspar Althoefer

  14 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kaspar Althoefer from Queen Mary University of London about soft robotic manipulators for healthcare and manufacturing.

Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

  07 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Vali Lalioti from the University of the Arts London about how art, culture and robotics interact.

Robot Talk Episode 111 – Robots for climate action, with Patrick Meier

  28 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Patrick Meier from the Climate Robotics Network about how robots can help scale action on climate change.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association