Contour extraction for mapping

29 July 2010

share this:

To map their environment, robots typically collect large amounts of range and bearing measurements to walls around them. However, when using noisy sensors, additional efforts need to be done to extract a map from the recorded data points.

For this purpose, Altun et al. propose two algorithms for extracting smooth closed curves that compactly represent the environment without gaps. These curves are easier to use and store than the raw data points.

The first method fits active snake contours to the data as can be seen in the image below (left) while the second technique uses a neural network to generate a self-organized feature map of the environment (right). Particle swarm optimization is used to automatically tune the parameters of both algorithms.

In the bottom images, black dots represent the processed ultrasonic data, the blue curve is the curve fitted to this data using active snake contours or self-organized maps and the red curve is ground truth.

Experiments were conducted using the Nomad 200 robot equipped with three front ultrasonic sensors and a structured-light system. The robot was programmed to follow the walls of a small room while mapping the environment.

Results show that active snake contours perform better because they are able to discard outliers in the data and match angles and edges more precisely than the self-organized map.

Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :




Origin Story of the OAK-D, with Brandon Gilles

Brandon Gilles, the founder of Luxonis and maker of the OAK-D, describes the journey and the flexibility of the OAK-D line of products
01 July 2022, by

The one-wheel Cubli

Researchers Matthias Hofer, Michael Muehlebach and Raffaello D’Andrea have developed the one-wheel Cubli, a three-dimensional pendulum system that can balance on its pivot using a single reaction wheel. How is it possible to stabilize the two tilt angles of the system with only a single reaction wheel?
30 June 2022, by and

At the forefront of building with biology

Raman is, as she puts it, “a mechanical engineer through and through.” Today, Ritu Raman leads the Raman Lab and is an Assistant Professor in the Department of Mechanical Engineering.
28 June 2022, by

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

In this episode, Audrow Nash speaks to Maria Telleria, who is a co-founder and the CTO of Canvas. Canvas makes a drywall finishing robot and is based in the Bay Area. In this interview, Maria talks ab...
21 June 2022, by and

©2021 - ROBOTS Association


©2021 - ROBOTS Association