Robohub.org
 

Cooperative localization using Kalman filtering


by
26 November 2010



share this:

Kalman filters are used in robotics to correct measurement errors. Imagine trying to precisely predict the position of an outdoor robot. The robot is equipped with a GPS and is able to measure the speed of its wheels (odometry). Only using GPS leads to measurements that are not precise while using only odometry leads to increasingly wrong estimates. Instead, what a Kalman filter does is fuse the information from odometry with the GPS measurements. This is done by, at each step of the robot control, predicting future sensor readings based on the commands given to the robot. The difference between the predicted sensor readings and the actual sensor readings is then used to update the filter. In this manner, the robot is able to improve its position estimate over time.

In work by Huang et al., groups of indoor robots attempt to estimate their global position and orientation using a special type of Kalman filter called the “Extended Kalman Filter”. Since they do not have access to GPS or landmarks in the environment, robots “cooperatively localize” by using odometry and measuring their relative position to neighboring robots. However, Kalman filters can be challenged when the measurements they make do not give them enough information with respect to what they are trying to predict. For example, sensor measurements might only provide meaningful information to correct position estimates but not global orientation. In these cases, the system is “not observable” and the Kalman filter can result in inconsistencies.

To overcome this challenge Huang et al. propose two ways of extending Kalman filters so as to constrain the observability of the system. Results are given in simulation and using four Pioneer I robots that were able to successfully estimate their pose. Odometry measurements were derived from wheel encoders and relative position was computed using an overhead camera thanks to the rectangular tags on each robot shown in the figure below. Results show that both developed algorithms outperform standard extended Kalman filters.

In the future, researchers hope to extend their approach to 3D localization.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association