Robohub.org
 

Cooperative modular satellites


by
02 January 2012



share this:

In Modular Space Robotics, modules self-assemble while in orbit to create larger satellites for specific missions. Modular satellites have the potential to reduce mission costs (small satellites are cheaper to launch), increase reliability, and enable on-orbit repair and refueling. Each of the modules has its load of sensors, fuel and attitude control actuators (thrusters). Assembled modules therefore have redundant sensor and actuation capabilities. By fusing sensor data, the modular satellites can follow its trajectory more precisely and smart thruster activation can help save fuel.

The challenge is to figure out how to control such a self-assembled robot to minimize fuel consumption while balancing fuel distribution and improve trajectory following. To this end, Toglia et al. propose a cooperative controller where one of the modules, with information about the configuration of all other modules, is responsible for computing an optimal control schema. An extended Kalman-Bucy Filter is used to implement sensor fusion.

The cooperative controller was compared to an independent controller where each module attempts to follow its own trajectory while minimizing its own fuel usage and trajectory errors. Results from simulation and reality show that the cooperative controller can save significant amounts of fuel, up to 43% in one experiment, while making the trajectories more precise.

Experiments in reality were performed with two satellites using the MIT Field and Space Robotics Laboratory Free-Flying Space Robot Test Bed shown below.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.

Robot Talk Episode 140 – Robot balance and agility, with Amir Patel

  16 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Amir Patel from University College London about designing robots with the agility and manoeuvrability of a cheetah.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

and   14 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.

Robot Talk Episode 139 – Advanced robot hearing, with Christine Evers

  09 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Christine Evers from University of Southampton about helping robots understand the world around them through sound.

Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence