Robohub.org
 

Cooperative modular satellites


by
02 January 2012



share this:

In Modular Space Robotics, modules self-assemble while in orbit to create larger satellites for specific missions. Modular satellites have the potential to reduce mission costs (small satellites are cheaper to launch), increase reliability, and enable on-orbit repair and refueling. Each of the modules has its load of sensors, fuel and attitude control actuators (thrusters). Assembled modules therefore have redundant sensor and actuation capabilities. By fusing sensor data, the modular satellites can follow its trajectory more precisely and smart thruster activation can help save fuel.

The challenge is to figure out how to control such a self-assembled robot to minimize fuel consumption while balancing fuel distribution and improve trajectory following. To this end, Toglia et al. propose a cooperative controller where one of the modules, with information about the configuration of all other modules, is responsible for computing an optimal control schema. An extended Kalman-Bucy Filter is used to implement sensor fusion.

The cooperative controller was compared to an independent controller where each module attempts to follow its own trajectory while minimizing its own fuel usage and trajectory errors. Results from simulation and reality show that the cooperative controller can save significant amounts of fuel, up to 43% in one experiment, while making the trajectories more precise.

Experiments in reality were performed with two satellites using the MIT Field and Space Robotics Laboratory Free-Flying Space Robot Test Bed shown below.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence