Robohub.org
 

Cooperative modular satellites


by
02 January 2012



share this:

In Modular Space Robotics, modules self-assemble while in orbit to create larger satellites for specific missions. Modular satellites have the potential to reduce mission costs (small satellites are cheaper to launch), increase reliability, and enable on-orbit repair and refueling. Each of the modules has its load of sensors, fuel and attitude control actuators (thrusters). Assembled modules therefore have redundant sensor and actuation capabilities. By fusing sensor data, the modular satellites can follow its trajectory more precisely and smart thruster activation can help save fuel.

The challenge is to figure out how to control such a self-assembled robot to minimize fuel consumption while balancing fuel distribution and improve trajectory following. To this end, Toglia et al. propose a cooperative controller where one of the modules, with information about the configuration of all other modules, is responsible for computing an optimal control schema. An extended Kalman-Bucy Filter is used to implement sensor fusion.

The cooperative controller was compared to an independent controller where each module attempts to follow its own trajectory while minimizing its own fuel usage and trajectory errors. Results from simulation and reality show that the cooperative controller can save significant amounts of fuel, up to 43% in one experiment, while making the trajectories more precise.

Experiments in reality were performed with two satellites using the MIT Field and Space Robotics Laboratory Free-Flying Space Robot Test Bed shown below.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence