Robohub.org
 

Cooperative modular satellites

by
02 January 2012



share this:

In Modular Space Robotics, modules self-assemble while in orbit to create larger satellites for specific missions. Modular satellites have the potential to reduce mission costs (small satellites are cheaper to launch), increase reliability, and enable on-orbit repair and refueling. Each of the modules has its load of sensors, fuel and attitude control actuators (thrusters). Assembled modules therefore have redundant sensor and actuation capabilities. By fusing sensor data, the modular satellites can follow its trajectory more precisely and smart thruster activation can help save fuel.

The challenge is to figure out how to control such a self-assembled robot to minimize fuel consumption while balancing fuel distribution and improve trajectory following. To this end, Toglia et al. propose a cooperative controller where one of the modules, with information about the configuration of all other modules, is responsible for computing an optimal control schema. An extended Kalman-Bucy Filter is used to implement sensor fusion.

The cooperative controller was compared to an independent controller where each module attempts to follow its own trajectory while minimizing its own fuel usage and trajectory errors. Results from simulation and reality show that the cooperative controller can save significant amounts of fuel, up to 43% in one experiment, while making the trajectories more precise.

Experiments in reality were performed with two satellites using the MIT Field and Space Robotics Laboratory Free-Flying Space Robot Test Bed shown below.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots can be companions, caregivers, collaborators — and social influencers

People are hardwired to respond socially to technology that presents itself as even vaguely social. While this may sound like the beginnings of a Black Mirror episode, this tendency is precisely what allows us to enjoy social interactions with robots and place them in caregiver, collaborator or companion roles.
26 November 2021, by

Interview with Tao Chen, Jie Xu and Pulkit Agrawal: CoRL 2021 best paper award winners

The award-winning authors describe their work on a system for general in-hand object re-orientation.
24 November 2021, by
ep.

341

podcast

How Simbe Robotics is Innovating in Retail, with Brad Bogolea

Brad Bogolea discusses the innovation behind Tally, the autonomous robot from Simbe Robotics. Tally collects real-time analytics inside retail stores to improve the customer shopping experience, as well as the efficiency of managing the store.
23 November 2021, by

Top 10 recommendations for a video gamer who you’d like to read (or even just touch) a book

Here is the Robotics Through Science Fiction Top 10 recommendations of books that have robots plus enough world building to rival Halo or Doom and lots of action or puzzles to solve. What’s even cooler is that you can cleverly use the “Topics” links to work in some STEM talking points.
20 November 2021, by

Top tweets from the Conference on Robot Learning #CoRL2021

In this post we bring you a glimpse of the conference through the most popular tweets about the conference written last week. Cool robot demos, short and sweet explanation of papers and award finalists to look forward to next year's edition.
19 November 2021, by

Finding inspiration in starfish larva

Researchers at ETH Zurich have developed a tiny robot that mimics the movement of a starfish larva. It is driven by sound waves and equipped with tiny hairs that direct the fluid around it, just like its natural model. In the future, such microswimmers could deliver drugs to diseased cells with pinpoint accuracy.
17 November 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association