Robohub.org
 

Cooperative modular satellites

by
02 January 2012



share this:

In Modular Space Robotics, modules self-assemble while in orbit to create larger satellites for specific missions. Modular satellites have the potential to reduce mission costs (small satellites are cheaper to launch), increase reliability, and enable on-orbit repair and refueling. Each of the modules has its load of sensors, fuel and attitude control actuators (thrusters). Assembled modules therefore have redundant sensor and actuation capabilities. By fusing sensor data, the modular satellites can follow its trajectory more precisely and smart thruster activation can help save fuel.

The challenge is to figure out how to control such a self-assembled robot to minimize fuel consumption while balancing fuel distribution and improve trajectory following. To this end, Toglia et al. propose a cooperative controller where one of the modules, with information about the configuration of all other modules, is responsible for computing an optimal control schema. An extended Kalman-Bucy Filter is used to implement sensor fusion.

The cooperative controller was compared to an independent controller where each module attempts to follow its own trajectory while minimizing its own fuel usage and trajectory errors. Results from simulation and reality show that the cooperative controller can save significant amounts of fuel, up to 43% in one experiment, while making the trajectories more precise.

Experiments in reality were performed with two satellites using the MIT Field and Space Robotics Laboratory Free-Flying Space Robot Test Bed shown below.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.

Virtual-reality tech is fast becoming more real

Touch sensations are improving to help sectors like healthcare and manufacturing, while other advances are being driven by the gaming industry.
16 September 2023, by

High-tech microscope with ML software for detecting malaria in returning travellers

Method not as accurate as human experts, but shows promise.
14 September 2023, by and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association