Robohub.org
 

Cultibotics as a quality of life issue


by
26 July 2009



share this:

Your typical farm raises at most a few crops, frequently only one. Because it’s what I know, and because it’s in practically every processed food you can buy, let’s take wheat as an example.

 

Wheat comes in two main growing patterns, winter and spring. Winter wheat is planted in early fall, where winters are relatively mild, grows to a lawn-like few inches in height before winter, and then resumes growing as winter recedes, and is ready for harvest in late spring or early summer. Spring wheat is planted in late winter or early spring and is ready for harvest in late summer or early fall. Either way the ground looks much like a disaster zone between harvest and replanting, especially with old-school tillage which begins with plowing under the stubble from the last crop, and, like most disaster zones, it’s a prolific source of dust. To live in wheat country is to live with a landscape in this mutilated condition several months out of each year.

 

The fault isn’t so much with the technology in use (aside from the choice of tillage regimes), but is rather a result of monoculture, the planting of a single crop year after year. Even using standard tillage practices, something as simple as a crop rotation system might have wheat harvest immediately followed by the planting of something else, clover for instance. However, much of wheat country gets insufficient rainfall to support more than one crop per year. In fact, without irrigation, one crop every two years is more common on the high plains, meaning that even during the height of growing season half the land under cultivation continues to look desolate and contribute to the dust-load in the lower atmosphere, at the cost of some of its own fertility.

 

Nothing about the equipment in common use precludes crop rotations, and row cropping systems can manage two, or even three crops in the ground at the same time, but three is about the limit. Using conventional methods, intermixing a dozen or more species, other than for pasture or hay, is unthinkable, no matter what benefit might result. So is continuous cropping unthinkable. You can grow pumpkins among the corn stalks in the fall and snow peas climbing up them in the early spring, but sooner or later you’ll need to turn under the debris, if not to prepare a seed bed for more corn then to keep the thistles in check. [Using conventional methods you can’t simply uproot the corn stalks and gather up the pumpkin and pea vines and toss it all on the compost pile, at least not working around corn sprouts that were planted through the debris.]

 

For continuous cropping, you need more deft handling of soil and plant materials than implements pulled by tractors can provide. You need something more like what a gardener does.

 

With continuous cropping there’s always something in the ground to break the wind and keep down the dust, and while the field will never have the look of ripe crop of monoculture wheat, all ready for harvest at once, it will also never look like a desert, nor, with proper handling, like a thistle patch.

 

What you get is a landscape that’s more varied throughout the year, but not so starkly punctuated by season.

 

What you also get is more variety in production. Instead of wheat, wheat, and more wheat you might also get squash, beans, onions, peppers, millet, and so forth, as well as perennials like sand plums, apricots, currents, and mulberries, all the makings of a healthy diet.

 

The key to making this possible is dexterity combined with attention to detail, such as could only, until recently, be supplied by people. The key to making it practical is robotics.

 

To the extent there is any close connection between the quality of land management and the quality of life that land supports, it follows that the quality of life achievable through the best available land management method will be better than what can be achieved without it.

 

You cannot economically duplicate, by any other means, the quality of land management that is achievable through the appropriate application of robotics.

 

Reposted from Cultibotics.



tags: ,


John Payne





Related posts :



Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

and   15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

and   01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

RoboCupRescue: an interview with Adam Jacoff

and   25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence