Robohub.org
 

Data-driven grasping


by
12 September 2011



share this:

As robots enter our industries and homes, they will be required to manipulate a large diversity of objects with unknown shapes, sizes and orientations. One approach would be to have the robot spend time building a precise model of the object of interest and then performing an optimal grasp using inverse kinematics.

Instead, Goldfeder et al. propose data-driven grasping, a fast approach that does not require precise sensing. The idea is that the robot builds a database of possible grasps suitable for a large variety of shapes. When a new object is presented to the robot, it selects a shape from the database that is similar and performs the corresponding grasp. This matching phase can even be performed with partial sensor data.

Experiments were conducted both in simulation and using HERB, a home exploring robotic butler platform developed by Intel Research and CMU. HERB has a Barrett hand mounted on a Barrett WAM arm and is equipped with a 2 megapixel webcam, which is the only sensor used during trials. Results can be seen in the excellent video below showing the robot grasping toy planes, gloves and even a ukulele!

Just in case you want to build your own data-driven grasper, here are the main steps taken from the publication:

Step 1: Creating a grasp database of 3D models annotated with precomputed grasps and quality scores.
Step 2: Indexing the database for retrieval using partial 3D geometry.
Step 3: Finding matches in the database using only the sensor data, which is typically incomplete.
Step 4: Aligning the object to each of the matched models from the database.
Step 5: Selecting a grasp from the candidate grasps provided by the aligned matches.
Step 6: Executing the grasp and evaluating the results.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 113 – Soft robotic hands, with Kaspar Althoefer

  14 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kaspar Althoefer from Queen Mary University of London about soft robotic manipulators for healthcare and manufacturing.

Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

  07 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Vali Lalioti from the University of the Arts London about how art, culture and robotics interact.

Robot Talk Episode 111 – Robots for climate action, with Patrick Meier

  28 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Patrick Meier from the Climate Robotics Network about how robots can help scale action on climate change.

Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association