Data-driven grasping

12 September 2011

share this:

As robots enter our industries and homes, they will be required to manipulate a large diversity of objects with unknown shapes, sizes and orientations. One approach would be to have the robot spend time building a precise model of the object of interest and then performing an optimal grasp using inverse kinematics.

Instead, Goldfeder et al. propose data-driven grasping, a fast approach that does not require precise sensing. The idea is that the robot builds a database of possible grasps suitable for a large variety of shapes. When a new object is presented to the robot, it selects a shape from the database that is similar and performs the corresponding grasp. This matching phase can even be performed with partial sensor data.

Experiments were conducted both in simulation and using HERB, a home exploring robotic butler platform developed by Intel Research and CMU. HERB has a Barrett hand mounted on a Barrett WAM arm and is equipped with a 2 megapixel webcam, which is the only sensor used during trials. Results can be seen in the excellent video below showing the robot grasping toy planes, gloves and even a ukulele!

Just in case you want to build your own data-driven grasper, here are the main steps taken from the publication:

Step 1: Creating a grasp database of 3D models annotated with precomputed grasps and quality scores.
Step 2: Indexing the database for retrieval using partial 3D geometry.
Step 3: Finding matches in the database using only the sensor data, which is typically incomplete.
Step 4: Aligning the object to each of the matched models from the database.
Step 5: Selecting a grasp from the candidate grasps provided by the aligned matches.
Step 6: Executing the grasp and evaluating the results.

Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory

Related posts :

Interview with Dautzenberg Roman: #IROS2023 Best Paper Award on Mobile Manipulation sponsored by OMRON Sinic X Corp.

The award-winning author describe their work on an aerial robot which can exert large forces onto walls.
19 November 2023, by

Robot Talk Episode 62 – Jorvon Moss

In the latest episode of the Robot Talk podcast, Claire chatted to Jorvon (Odd-Jayy) Moss from Digikey about making robots at home, and robot design and aesthetics.
17 November 2023, by

California is the robotics capital of the world

In California, robotics technology is a small fish in a much bigger technology pond, and that tends to conceal how important Californian companies are to the robotics revolution.
12 November 2023, by

Robot Talk Episode 61 – Masoumeh Mansouri

In the latest episode of the Robot Talk podcast, Claire chatted to Masoumeh (Iran) Mansouri from the University of Birmingham about culturally sensitive robots and planning in complex environments.
10 November 2023, by

The 5 levels of Sustainable Robotics

Robots can solve the UN SDGs and not just via the application area.
08 November 2023, by

Using language to give robots a better grasp of an open-ended world

By blending 2D images with foundation models to build 3D feature fields, a new MIT method helps robots understand and manipulate nearby objects with open-ended language prompts.
06 November 2023, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association