Robohub.org
 

Data-driven grasping

by
12 September 2011



share this:

As robots enter our industries and homes, they will be required to manipulate a large diversity of objects with unknown shapes, sizes and orientations. One approach would be to have the robot spend time building a precise model of the object of interest and then performing an optimal grasp using inverse kinematics.

Instead, Goldfeder et al. propose data-driven grasping, a fast approach that does not require precise sensing. The idea is that the robot builds a database of possible grasps suitable for a large variety of shapes. When a new object is presented to the robot, it selects a shape from the database that is similar and performs the corresponding grasp. This matching phase can even be performed with partial sensor data.

Experiments were conducted both in simulation and using HERB, a home exploring robotic butler platform developed by Intel Research and CMU. HERB has a Barrett hand mounted on a Barrett WAM arm and is equipped with a 2 megapixel webcam, which is the only sensor used during trials. Results can be seen in the excellent video below showing the robot grasping toy planes, gloves and even a ukulele!

Just in case you want to build your own data-driven grasper, here are the main steps taken from the publication:

Step 1: Creating a grasp database of 3D models annotated with precomputed grasps and quality scores.
Step 2: Indexing the database for retrieval using partial 3D geometry.
Step 3: Finding matches in the database using only the sensor data, which is typically incomplete.
Step 4: Aligning the object to each of the matched models from the database.
Step 5: Selecting a grasp from the candidate grasps provided by the aligned matches.
Step 6: Executing the grasp and evaluating the results.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 35 – Interview with Emily S. Cross

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Professor Emily S. Cross from the University of Glasgow and Western Sydney University all about neuroscience, social learning, and human-robot interaction.
03 February 2023, by

Sea creatures inspire marine robots which can operate in extra-terrestrial oceans

Scientists at the University of Bristol have drawn on the design and life of a mysterious zooplankton to develop underwater robots.
02 February 2023, by

Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association