Robohub.org
 

DNA testing chip delivers results in one hour, paves way for personalized drug treatments


by
04 April 2013



share this:
13-0022-r

Panasonic, together with the Belgium-based research institution IMEC, has developed a DNA testing chip that automates all stages of obtaining genetic information, including preprocessing.

This development is expected to enable personalized, tailor-made therapy to become widespread.

“This is the chip we’ve actually developed. As you can see, it’s less than half the size of a business card. It contains everything needed for testing DNA. Once a drop of blood is inserted, the chip completes the entire process, up to SNP detection.”

SNPs are variations in a single DNA base among individuals.

Detecting SNPs makes it possible to check whether genetically transmitted diseases are present, evaluate future risks, and identify genes related to illness.

“By investigating SNPs, we can determine that this drug will work for this person, or this drug will have severe side-effects on that person. Investigating SNPs enables tailor-made therapy. But with the current method, it has to be done in a specialized lab, so it actually takes three to four days. In the worst case, it takes a week from sending the sample to getting the result. Our equipment can determine a patient’s SNPs in just an hour after receiving the blood.”

Testing is done simply by injecting the blood and a chemical into the chip, and setting it in the testing system.

First of all, the blood and chemical are mixed. DNA is then extracted from the mixed solution. The regions containing SNPs are then cut out and amplified. DNA amplification uses technology called PCR, which cuts out the desired sections by varying the temperature. With the conventional method, this process took two hours.

“Through careful attention to thermal separation design, we’ve achieved high-speed PCR, where 30 temperature cycles are completed in nine minutes. We think this is one of the fastest PCR systems in the world.”

The amplified DNA is then sent through a micropump to a DNA filter. Here, the DNA is separated for each section length. Then, a newly developed electrochemical sensor identifies SNPs while the DNA is dissolved in the chemical.

“To implement this system on one chip, and make detection easy, the first thing we focused on was the actuators. This system requires a very small, powerful pump. In our case, we used a conductive polymer for the actuators. A feature of these actuators is they’re powerful, yet extremely compact. They can exert a pressure of up to 30MPa.”

“Ultimately, we’d like to make this system battery-powered. We think that would enable genetically modified foods to be tested while still in the warehouse.”



tags: ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence