Robohub.org
 

Drive kinematics: Skid steer and mecanum (ROS twist included)


by
19 July 2016



share this:
Photo: Wikipedia

Photo: Wikipedia

I am often in need of the basic kinematic motion equations for skid steer vehicles. I have also recently been working with mecanum wheeled vehicles. The skid steer equations are fairly simple and easy to find, however, I will include it in different versions and include a ROS approach. The mecanum wheel equations are harder to find and there are different versions floating around. The first version I found had a lot of trig and mostly worked. The version I present here is easier to intuitively understand and seems to work better (I don’t need a random scale factor for this version), I also include a ROS approach for them.

Skid Steer / Differential Drive

Here is some math for 2 and 4 wheel differential drive vehicles, 2 wheels and a castor, or skid steer tracked vehicles.

Arc based commands

The basic skid steer equations are:

velocity_right = w(RADIUS_OF_ARC_TO_DRIVE + WHEEL_BASE/2)
velocity_left = w(RADIUS_OF_ARC_TO_DRIVE – WHEEL_BASE/2)

Where w is the angular rotation, RADIUS_OF_ARC_TO_DRIVE is the arc radius that the robot should drive, and the WHEEL_BASE is the distance from the center of the left wheel to the center of the right wheel (See image above).

This can also be written as:

w = (velocity_right-velocity_left)/WHEEL_BASE

There are two special cases:

IF velocity_right == velocity_left :
THEN the radius of the arc is infinite so the robot will drive straight.

IF velocity_right == -velocity_left :
THEN the radius of the arc is 0, and the robot rotates in place (ie. point turn)

Linear & Angular Velocity Commands for ROS

In ROS if using the Twist topic (which is the default for drive messages) (message name is often cmd_vel) you will often set linear_velocity in the linear.x field and angular_velocity in the angular.zfield.

velocity_left_cmd = (linear_velocity – angular_velocity * WHEEL_BASE / 2.0)/WHEEL_RADIUS;

velocity_right_cmd = (linear_velocity + angular_velocity * WHEEL_BASE / 2.0)/WHEEL_RADIUS;

Mecanum Wheel Math

 

Mecanum wheels from Andymark

Mecanum wheels from Andymark

In ROS if using the Twist message you will often set the linear.x, linear.y and angular.z fields. One unrelated note is that if you are operating on uneven terrain then doing mecanum type motions will fail and have a lot of slip. Skid steer type motions will often work better (using the mecanum wheels).

WHEEL_SEPARATION_WIDTH = DISTANCE_LEFT_TO_RIGHT_WHEEL / 2

WHEEL_SEPARATION_LENGTH = DISTANCE_FRONT_TO_REAR_WHEEL / 2

Forward kinematics

Wheel commands units are in rad/s

wheel_front_left = (1/WHEEL_RADIUS) * (linear.x – linear.y – (WHEEL_SEPARATION_WIDTH + WHEEL_SEPARATION_LENGTH)*angular.z);

wheel_front_right = (1/WHEEL_RADIUS) * (linear.x + linear.y + (WHEEL_SEPARATION_WIDTH + WHEEL_SEPARATION_LENGTH)*angular.z);

wheel_rear_left = (1/WHEEL_RADIUS) * (linear.x + linear.y – (WHEEL_SEPARATION_WIDTH + WHEEL_SEPARATION_LENGTH)*angular.z);

wheel_rear_right = (1/WHEEL_RADIUS) * (linear.x – linear.y + (WHEEL_SEPARATION_WIDTH + WHEEL_SEPARATION_LENGTH)*angular.z);

To drive a robot you will probably need to also invert one side since the motors are mounted opposite the other side. For example:

wheel_front_right = -1 * wheel_front_right

wheel_rear_right = -1 * wheel_rear_right

Also this gives an output in rad/s. If your motor controller is operating with encoder counts as the unit you will need to convert the units.

Inverse Kinematics

linear.x = (wheel_front_left + wheel_front_right + wheel_rear_left + wheel_rear_right) * (WHEEL_RADIUS/4)

linear.y = ( -wheel_front_left + wheel_front_right + wheel_rear_left – wheel_rear_right) * (WHEEL_RADIUS/4)

angular.z = ( -wheel_front_left + wheel_front_right – wheel_rear_left + wheel_rear_right) * (WHEEL_RADIUS/(4 * (WHEEL_SEPARATION_WIDTH + WHEEL_SEPARATION_LENGTH)))

Source for mecanum wheel math: here. There are other versions of how to compute the wheel velocities but this is the one I like best.

If you have any pressing questions, visit the Robots for Roboticists Forum.


The post “Drive Kinematics: Skid Steer & Mecanum (ROS Twist included)” appeared on Robots For Roboticists.



tags:


Robots for Roboticists David Kohanbash is a Robotics Engineer in Pittsburgh, PA in the United States. He loves building, playing and working with Robots.
Robots for Roboticists David Kohanbash is a Robotics Engineer in Pittsburgh, PA in the United States. He loves building, playing and working with Robots.





Related posts :



Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence