Robohub.org
 

Exploring ROS2 using wheeled Robot – #3 – Moving the robot


by
30 November 2021



share this:

By Marco Arruda

In this post you’ll learn how to publish to a ROS2 topic using ROS2 C++. Up to the end of the video, we are moving the robot Dolly robot, simulated using Gazebo 11.

You’ll learn:

  • How to create a node with ROS2 and C++
  • How to public to a topic with ROS2 and C++

1 – Setup environment – Launch simulation

Before anything else, make sure you have the rosject from the previous post, you can copy it from here.

Launch the simulation in one webshell and in a different tab, checkout the topics we have available. You must get something similar to the image below:

2 – Create a topic publisher

Create a new file to container the publisher node: moving_robot.cpp and paste the following content:

#include <chrono>
#include <functional>
#include <memory>

#include "rclcpp/rclcpp.hpp"
#include "geometry_msgs/msg/twist.hpp"

using namespace std::chrono_literals;

/* This example creates a subclass of Node and uses std::bind() to register a
 * member function as a callback from the timer. */

class MovingRobot : public rclcpp::Node {
public:
  MovingRobot() : Node("moving_robot"), count_(0) {
    publisher_ =
        this->create_publisher("/dolly/cmd_vel", 10);
    timer_ = this->create_wall_timer(
        500ms, std::bind(&MovingRobot::timer_callback, this));
  }

private:
  void timer_callback() {
    auto message = geometry_msgs::msg::Twist();
    message.linear.x = 0.5;
    message.angular.z = 0.3;
    RCLCPP_INFO(this->get_logger(), "Publishing: '%f.2' and %f.2",
                message.linear.x, message.angular.z);
    publisher_->publish(message);
  }
  rclcpp::TimerBase::SharedPtr timer_;
  rclcpp::Publisher::SharedPtr publisher_;
  size_t count_;
};

int main(int argc, char *argv[]) {
  rclcpp::init(argc, argv);
  rclcpp::spin(std::make_shared());
  rclcpp::shutdown();
  return 0;
}QoS (Quality of Service)

Similar to the subscriber it is created a class that inherits Node. A publisher_ is setup and also a callback, although this time is not a callback that receives messages, but a timer_callback called in a frequency defined by the timer_ variable. This callback is used to publish messages to the robot.

The create_publisher method needs two arguments:

  • topic name
  • QoS (Quality of Service) – This is the policy of data saved in the queue. You can make use of different middlewares or even use some provided by default. We are just setting up a queue of 10. By default, it keeps the last 10 messages sent to the topic.

The message published must be created using the class imported:

message = geometry_msgs::msg::Twist();

We ensure the callback methods on the subscribers side will always recognize the message. This is the way it has to be published by using the publisher method publish.

3 – Compile and run the node

In order to compile we need to adjust some things in the ~/ros2_ws/src/my_package/CMakeLists.txt. So add the following to the file:

  • Add the geometry_msgs dependency
  • Append the executable moving_robot
  • Add install instruction for moving_robot
find_package(geometry_msgs REQUIRED)
...
# moving robot
add_executable(moving_robot src/moving_robot.cpp)
ament_target_dependencies(moving_robot rclcpp geometry_msgs)
...
install(TARGETS
  moving_robot
  reading_laser
  DESTINATION lib/${PROJECT_NAME}/
)

We can run the node like below:

source ~/ros2_ws/install/setup.bash
ros2 run my_package

Related courses & extra links:

The post Exploring ROS2 using wheeled Robot – #3 – Moving the Robot
appeared first on The Construct.




The Construct Blog





Related posts :



Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.

Robot Talk Episode 105 – Working with robots in industry, with Gianmarco Pisanelli 

  17 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gianmarco Pisanelli from the Advanced Manufacturing Research Centre about how to promote the safe and intuitive use of robots in manufacturing.

Robot Talk Episode 104 – Robot swarms inspired by nature, with Kirstin Petersen

  10 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kirstin Petersen from Cornell University about how robots can work together to achieve complex behaviours.

Robot Talk Episode 103 – Delivering medicine by drone, with Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Soft robots inspired by plants, with Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Microscopic surgical robots, with Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Robots in space, with Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association