Robohub.org
 

Flying robot actors

by
08 December 2010



share this:

Around a year ago, theater-goers at Texas A&M discovered Shakespeare’s play “A Midsummer Night’s Dream”. The plot unfolds in a magical forest inhabited by fairies. To add to the otherworldly feel of the play, one large remote controlled quadroter and six palm sized helicopters, in their LED costumes, were used to complement the performance of “human fairies”.



Cooperating with people from theater is interesting because of their expertise in predicting how spectators will interpret the behavior of agents and what to do to make the agents believable. Furthermore, the theater is an ideal large-scale testbed to study the response of “untrained” humans (the audience and actors) to robots.

After four weeks of practice and eight performances, Murphy et al. came up with an impressive analysis of how robots were perceived. First, they identify three ways robots can generate emotional or cognitive impact (affect):

  • 1) The audience interprets the motion of robots as if they were living creatures (animacy). In one example, helicopters flying in rhythm to the music were deemed “excited by the music”.
  • 2) Actors, through their theatrical interaction with the robots, give them a meaning. Fairies scolding or cooing helicopters, and the fact that the robots would land in their hands, made the audience interpret them as “baby fairies”.
  • 3) Robots, through their behavior, are able to convey meaning. In the play, helicopters were able to play sounds and perform easy to interpret motions that were assimilated to mocking or joy.

Furthermore, the paper is a beautiful account of how people react to robots and assume they are safe and robust. Examples include approaching 1m quadrotors up close, throwing helicopters like a baseball to make them take off or assuming small helicopters will stay in the air if you waive your hands around them. The work also provides a nice summary of all the unintended situations that can arise (see table below) and the need of improvisation to deal with them.

For the future, Murphy et al. are planning new productions where robots have key roles!




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by

Robot Talk Episode 63 – Ayse Kucukyilmaz

In the latest episode of the Robot Talk podcast, Claire chatted to Ayse Kucukyilmaz from the University of Nottingham about collaboration, conflict and failure in human-robot interactions.
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association