Grasping with robots – which object is in reach?

17 August 2014

share this:

This post is part of our ongoing efforts to make the latest papers in robotics accessible to a general audience.

Imagine a robot reaching for a mug on the table, only to realize that it is too far, or that it would need to bend its arm joint backwards to get there. Understanding which objects are within reach and how to grasp them is an essential requirement if robots are to operate in our everyday environments. To solve this problem, a recent Autonomous Robots paper by Vahrenkamp et al. proposes a new approach to build a comprehensive representation of the capabilities of a robot related to reaching and grasping.

The “manipulability” representation shown below allows the robot to know where it can reach in 6D with its right arm. That means it knows which x,y,z positions it can reach, as well as the orientation of the robot hand that is best for manipulation. The representation takes into account constraints due to joints in the arm. The manipulability is encoded by color (blue: low, red: high).


A cut through one of these vector clouds looks like this.


In addition to single handed grasping, the authors discuss how the approach can be extended to grasping with two arms. Experiments were run in simulation on the humanoid robots ARMAR-III and ARMAR-IV.

And in case you want to try this at home, there is an open source version of this work here.

For more information, you can read the paper Representing the robot’s workspace through constrained manipulability analysis (Nikolaus Vahrenkamp and Tamim Asfour, Autonomous Robots – Springer US, July 2014) or ask questions below!


Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).
Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).

Related posts :

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by



Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by

Designing societally beneficial Reinforcement Learning (RL) systems

In this post, we aim to illustrate the different modalities harms can take when augmented with the temporal axis of RL. To combat these novel societal risks, we also propose a new kind of documentation for dynamic Machine Learning systems which aims to assess and monitor these risks both before and after deployment.
15 May 2022, by

Innovative ‘smart socks’ could help millions living with dementia

‘Smart socks’ that track rising distress in the wearer could improve the wellbeing of millions of people with dementia, non-verbal autism and other conditions that affect communication.
13 May 2022, by

Swiss Robotics Day showcases innovations and collaborations between academia and industry

The 2021 Swiss Robotics Day marked the beginning of NCCR Robotics’s final year. The project, launched in 2010, is on track to meet all its scientific goals in the three areas of wearable, rescue and educational robotics, while continuing to focus on supporting spin-offs, advancing robotics education and improving equality of opportunities for all robotics researchers.
10 May 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association