Robohub.org
 

‘Green Brain’ aims to build robot bees

by
02 October 2012



share this:

Researchers at the University of Sheffield and Sussex are trying to build an artificial honey bee brain. Called ‘Green Brain’, this project aims to simulate insect sensory systems, primarily seeing and smelling, and offers many benefits particularly in the areas of agricultural robots, or even search and rescue.

As featured today on BBC news

Honey bees are well known for their unerring ability to find their way back to a colony or hive. They are believed to use the position of the sun as a reference point and can compensate for its movement across the sky when calculating the route they need to return home.

“Because the honey bee brain is smaller and more accessible than any vertebrate brain, we hope to eventually be able to produce an accurate and complete model that we can test within a flying robot,” said Dr Marshall.

Dr James Marshall, leading the £1 million EPSRC1 funded project in Sheffield, said: “The development of an artificial brain is one of the greatest challenges in Artificial Intelligence. So far, researchers have typically studied brains such as those of rats, monkeys, and humans, but actually ‘simpler’ organisms such as social insects have surprisingly advanced cognitive abilities.”

Called “Green Brain”, and partially supported with hardware donated by NVIDIA Corporation, the project invites comparison with the IBM-sponsored Blue Brain initiative, which is developing brain modeling technologies using supercomputers with the ultimate goal of producing an accurate model of a human brain.

The hardware provided by NVIDIA is based on high-performance processors called “GPU accelerators” that generate the 3D graphics on home PCs and games consoles and power some of the world’s highest-performance supercomputers. These accelerators provide a very efficient way of performing the massive calculations needed to simulate a brain using a standard desktop PC – rather than on a large, expensive supercomputing cluster.

“Using NVIDIA’s massively parallel GPU accelerators for brain models is an important goal of the project as they allow us to build faster models than ever before,” explained Dr Thomas Nowotny, the leader of the Sussex team. “We expect that in many areas of science this technology will eventually replace the classic supercomputers we use today.”

Green Brain’s researchers anticipate that developing a model of a honey bee brain will offer a more accessible method of driving forward our knowledge of how a brain’s cognitive systems work, leading to advances in understanding animal and human cognition. “Because the honey bee brain is smaller and more accessible than any vertebrate brain, we hope to eventually be able to produce an accurate and complete model that we can test within a flying robot,” said Dr Marshall.

For full release from the University of Sheffield



tags: , ,


Andra Keay is the Managing Director of Silicon Valley Robotics, founder of Women in Robotics and is a mentor, investor and advisor to startups, accelerators and think tanks, with a strong interest in commercializing socially positive robotics and AI.
Andra Keay is the Managing Director of Silicon Valley Robotics, founder of Women in Robotics and is a mentor, investor and advisor to startups, accelerators and think tanks, with a strong interest in commercializing socially positive robotics and AI.





Related posts :



#ICRA2022 networking events

This year at ICRA there were great number of opportunities to involve and engage as well including networking events.
04 July 2022, by

ROS Awards 2022 results

The intention of these awards is to express recognition for contributions to the ROS community and the development of the ROS-based robot industry, and to help those contributions gain awareness.
02 July 2022, by
ep.

357

podcast

Origin Story of the OAK-D, with Brandon Gilles

Brandon Gilles, the founder of Luxonis and maker of the OAK-D, describes the journey and the flexibility of the OAK-D line of products
01 July 2022, by

The one-wheel Cubli

Researchers Matthias Hofer, Michael Muehlebach and Raffaello D’Andrea have developed the one-wheel Cubli, a three-dimensional pendulum system that can balance on its pivot using a single reaction wheel. How is it possible to stabilize the two tilt angles of the system with only a single reaction wheel?
30 June 2022, by and

At the forefront of building with biology

Raman is, as she puts it, “a mechanical engineer through and through.” Today, Ritu Raman leads the Raman Lab and is an Assistant Professor in the Department of Mechanical Engineering.
28 June 2022, by

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association