Robohub.org
 

How robots can help build better doctors

riek1_014b8322-32e1-4418-89eb-a054f834354e

A young doctor leans over a patient who has been in a serious car accident and invariably must be experiencing pain. The doctor’s trauma team examines the patient’s pelvis and rolls her onto her side to check her spine. They scan the patient’s abdomen with a rapid ultrasound machine, finding fluid. They insert a tube in her nose. Throughout the procedure, the patient’s face remains rigid, showing no signs of pain.

The patient’s facial demeanor isn’t a result of stoicism – it’s a robot, not a person. The trauma team is training on a “human patient simulator,” (HPS) a training tool which enables clinicians to practice their skills before treating real patients. HPS systems have evolved over the past several decades from mannequins into machines that can breathe, bleed and expel fluids. Some models have pupils that contract when hit by light. Others have entire physiologies that can change. They come in life-sized forms that resemble both children and adults.

But they could be better, said Laurel D. Riek, a computer science and engineering professor at the University of Notre Dame. As remarkable as modern patient simulators are, they have two major limitations.

“Their faces don’t actually move, and they are unable to sense or respond to the environment,” she said.

Riek, a roboticist, is designing the next generation of HPS systems. Her NSF-supported research explores new means for the robots to exhibit realistic, clinically relevant facial expressions and respond automatically to clinicians in real time.

“This work will enable hundreds of thousands of doctors, nurses, EMTs, firefighters and combat medics to practice their treatment and diagnostic skills extensively and safely on robots before treating real patients,” she said.

One novel aspect of Riek’s research is the development of new algorithms that use data from real patients to generate simulated facial characteristics. For example, Riek and her students have recently completed a pain simulation project and are the first research group to synthesize pain using patient data. This work won them best overall paper and best student paper at the International Meeting on Simulation in Healthcare, the top medical simulation conference.

Riek3

Riek’s team is now working on an interactive stroke simulator that can automatically sense and respond to learners as they work through a case. Stroke is the fifth leading cause of death in the United States, yet many of these deaths could be prevented through faster diagnosis and treatment.

“With current technology, clinicians are sometimes not learning the right skills. They are not able to read diagnostic clues from the face,” she said.

Yet learning to read those clues could yield lifesaving results. Preventable medical errors in hospitals are the third-leading cause of death in the United States.

“What’s really striking about this is that these deaths are completely preventable,” Riek said.
riek4

One factor contributing to those accidents is clinicians missing clues and going down incorrect diagnostic paths, using incorrect treatments or wasting time. Reading facial expressions, Riek said, can help doctors improve those diagnoses. It is important that their training reflects this.

In addition to modeling and synthesizing patient facial expressions, Riek and her team are building a new, fully-expressive robot head. By employing 3-D printing, they are working to produce a robot that is low-cost and will be one day available to both researchers and hobbyists in addition to clinicians.

The team has engineered the robot to have interchangeable skins, so that the robot’s age, race and gender can be easily changed. This will enable researchers to explore social factors or “cultural competency” in new ways.

“Clinicians can create different patient histories and backgrounds and can look at subtle differences in how healthcare workers treat different kinds of patients,” Riek said.

Riek’s work has the potential to help address the patient safety problem, enabling clinicians to take part in simulations otherwise impossible with existing technology.

Related Website:
Robotics, Health & Communication Lab http://www3.nd.edu/~rhclab/



tags: , ,


the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.
the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.





Related posts :



Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence