Robohub.org
 

#ICRA16 duckies and robots video: Daily life activities

by
10 May 2016



share this:

ICRAduckies

The robotics community have created a series of video tributes that showcase some of the contributions to ICRA, the largest conference in the field of robotics and automation. Episode two features robots that iron garments, use spoons and spatulas to scoop up objects, and, of course, move rubber duckies!

Stay tuned for episode three: Incredible machines


Papers featured in this video:

“Multi-Sensor Surface Analysis for Robotic Ironing”
Yinxiao Li, Xiuhan Hu, Danfei Xu, Yonghao Yue, Eitan Grinspun, Peter K. Allen
(Columbia University)

This robot can effectively iron garments, using a camera to recognize where the wrinkles are. This technique has been successfully tested on pants, shirts, sweaters and fabric.


“Deep Spatial Autoencoders for Visuomotor Learning”
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
(UC Berkeley)

This robot used deep learning to obtain a concise representation of the visual scene from raw image pixels. Using these features, the robot learned hand-eye coordination skills such as using spoons and spatulas to scoop objects and moving duckies to their aquatic habitat.


“An ISO10218-compliant adaptive damping controller for safe Physical Human-Robot Interaction”
Benjamin Navarro, Andrea Cherubini, Aicha Fonte, Robin Passama, Gerard Poisson, and Philippe Fraisse
(PRISME Laboratory, University of Orléans)

This robot can safely perform a collaborative screwing task. The operator uses a touch interface to trigger the different phases of the work.


“Robotic Disease Detection in Greenhouses”
Noa Schor, Avital Bechar, Timea Ignat, Aviv Dombrovsky, Yigal Elad, Sigal Berman
(ABC robotics, Ben-Gurion University of the Negev)

This prototype of disease detection system for greenhouse peppers can lead to improved quality, increased yield, and reduction of pesticide use. The robot is guided by the perception of multiple threats (and occasional ducky visitors).


“Interactive Computational Imaging for Deformable Object Analysis”
Donald G. Dansereau, Surya P. N. Singh, Jurgen Leitner
(Australian Centre for Robotic Vision, Queensland University of Technology)

This robot analyzes the material properties of an object by watching, while gently squeezing. Image filtering and motion amplification allow the method to work with stiff or delicate objects, and those exhibiting little texture.

For more details about these clips, visit the ICRA trailer website.



tags: , , ,


Robohub Editors





Related posts :



Robot Talk Episode 35 – Interview with Emily S. Cross

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Professor Emily S. Cross from the University of Glasgow and Western Sydney University all about neuroscience, social learning, and human-robot interaction.
03 February 2023, by

Sea creatures inspire marine robots which can operate in extra-terrestrial oceans

Scientists at the University of Bristol have drawn on the design and life of a mysterious zooplankton to develop underwater robots.
02 February 2023, by

Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association