Robohub.org
 

iCub drums and crawls using bio-inspired control

by
17 January 2012



share this:

Ever see a lizard effortlessly run up a wall?

Like most vertebrates, lizards are able to quickly adapt to new environments in a robust way thanks to a special type of movement generator. The idea is that a high-level planner (the brain) is responsible for determining the key characteristics of a movement such as the position that needs to be reached by a limb or the amplitude and frequency with which the limbs should perform rhythmic motions. These high-level commands then serve as an input to motion primitives responsible for activating muscles in the correct sequence. Motion primitives are typically organized at the spinal level through neural networks called central pattern generators (CPGs).

This control architecture has many advantages for robotics. First, once the motion primitives are designed, only high-level commands are required to control the entire motion of the robot. Therefor, instead of planning the positions of all joints, the motion planner only needs to issue high-level goals such as “reach there” or “move your arm rhythmically with this amplitude and this frequency”. This greatly reduces the complexity of planning motions for robots with many degrees of freedom. Furthermore, CPGs are very fast, have low computational cost and can be modulated by sensory feedback in order to obtain adaptive behaviors.

Using this control architecture, Degallier et al. were able to turn the iCub humanoid seen in the video below into an on-demand drummer. Random users at a robotics conference were able to change on-line a score that the iCub was playing or test how well it could adapt when its drums were moved. To show the generality of their approach, they then applied the same architecture to make the iCub crawl and reach for objects. Although one behaviour was rhythmic (crawling) and the other discrete (reaching), the robot was easily able to switch between the two.



tags: ,


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 90 – Robotically Augmented People

In this special live recording at the Victoria and Albert Museum, Claire chatted to Milia Helena Hasbani, Benjamin Metcalfe, and Dani Clode about robotic prosthetics and human augmentation.
21 June 2024, by

Robot Talk Episode 89 – Simone Schuerle

In the latest episode of the Robot Talk podcast, Claire chatted to Simone Schuerle from ETH Zürich all about microrobots, medicine and science.
14 June 2024, by

Robot Talk Episode 88 – Lord Ara Darzi

In the latest episode of the Robot Talk podcast, Claire chatted to Lord Ara Darzi from Imperial College London all about robotic surgery - past, present and future.
07 June 2024, by

Robot Talk Episode 87 – Isabelle Ormerod

In the latest episode of the Robot Talk podcast, Claire chatted to Isabelle Ormerod from the University of Bristol all about human-centred design and women in robotics.
31 May 2024, by

Robot Talk Episode 86 – Mario Di Castro

In the latest episode of the Robot Talk podcast, Claire chatted to Mario Di Castro from CERN all about robotic inspection and maintenance in hazardous environments.
24 May 2024, by

Congratulations to the #ICRA2024 best paper winners

The winners and finalists in the different categories have been announced.
20 May 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association