Robohub.org
 

Internal models of robot bodies


by
06 July 2011



share this:

Robots that have an internal model of their body could potentially use it to predict how a motor action will affect their position and what sequence of actions will bring them to a desired configuration (inverse kinematics). Knowing in what state a robot’s body is can also be useful for merging sensor readings, for example to determine the position of an arm using a head mounted camera and joint angle sensors.

Ideally the model should be able to simulate all movements that are physically possible for a given robot body. For this purpose, Malte Schilling uses a special type of recurrent neural network called a “Mean of Multiple Computation” (MMC) network. The model can be used for the tasks described earlier (predictions, inverse kinematics and sensor fusion) simply by changing the values that are fed as input to the network. However, work so far using MMC networks has been limited to 2D or simple 3D scenarios. For more general 3D models, Schilling introduces dual quaternions as a suitable representation of the kinematics of a body.

The robot's task is to reach all the target points in the 3D environment.

Experiments were done in simulation using a three-segment arm. The task was to reach for targets in 3D space, beginning at a predefined starting position. Results shown in the figure below depict the successful robot motion using this model. Unlike other models in the literature, the MMC network does not require the precomputation of the complete movement, it is able to deal with extra degrees of freedom and it can accomodate external constraints.

Movement of a robot arm reaching for target 6 (previous figure) controlled by the MMC network.

In the future, authors hope to build a network that can represent a complete body, for example, the body of a hexapod walker with 18 joints and to use this body model for planning ahead.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence