Robohub.org
 

Internal models of robot bodies

by
06 July 2011



share this:

Robots that have an internal model of their body could potentially use it to predict how a motor action will affect their position and what sequence of actions will bring them to a desired configuration (inverse kinematics). Knowing in what state a robot’s body is can also be useful for merging sensor readings, for example to determine the position of an arm using a head mounted camera and joint angle sensors.

Ideally the model should be able to simulate all movements that are physically possible for a given robot body. For this purpose, Malte Schilling uses a special type of recurrent neural network called a “Mean of Multiple Computation” (MMC) network. The model can be used for the tasks described earlier (predictions, inverse kinematics and sensor fusion) simply by changing the values that are fed as input to the network. However, work so far using MMC networks has been limited to 2D or simple 3D scenarios. For more general 3D models, Schilling introduces dual quaternions as a suitable representation of the kinematics of a body.

The robot's task is to reach all the target points in the 3D environment.

Experiments were done in simulation using a three-segment arm. The task was to reach for targets in 3D space, beginning at a predefined starting position. Results shown in the figure below depict the successful robot motion using this model. Unlike other models in the literature, the MMC network does not require the precomputation of the complete movement, it is able to deal with extra degrees of freedom and it can accomodate external constraints.

Movement of a robot arm reaching for target 6 (previous figure) controlled by the MMC network.

In the future, authors hope to build a network that can represent a complete body, for example, the body of a hexapod walker with 18 joints and to use this body model for planning ahead.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 52 – Sara Bernardini

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Sara Bernardini from Royal Holloway University of London all about decision-making, reconfigurable robots, and oceanography.
09 June 2023, by

Sponge makes robotic device a soft touch

A simple sponge has improved how robots grasp, scientists from the University of Bristol have found.
07 June 2023, by

#ICRA2023 awards finalists and winners

In this post we bring you all the paper awards finalists and winners presented during the 2023 edition of the IEEE International Conference on Robotics and Automation (ICRA).
05 June 2023, by

Ranking the best humanoid robots of 2023

Is Rosie the Robot Maid from the Jetsons here yet? As more and more companies announce their work towards the affordable humanoid robot, I wanted to create a reference chart.
03 June 2023, by

Robot Talk Episode 51 – James Kell

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to James Kell from Jacobs Engineering UK all about civil infrastructure, nuclear robotics and jet engine inspection.
02 June 2023, by

Automate 2023 recap and the receding horizon problem

“Thirty million developers” are the answer to driving billion-dollar robot startups, exclaimed Eliot Horowitz of Viam last week at Automate.
01 June 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association