Robohub.org
 

Katsushi Ikeuchi: e-Intangible Heritage | CMU RI Seminar


by
26 February 2017



share this:

Link to video on YouTube

Abstract: “Tangible heritage, such as temples and statues, is disappearing day-by-day due to human and natural disaster. In e-tangible heritage, such as folk dances, local songs, and dialects, has the same story due to lack of inheritors and mixing cultures. We have been developing methods to preserve such tangible and in-tangible heritage in the digital form. This project, which we refer to as e-Heritage, aims not only record heritage, but also analyzes those recorded data for better understanding as well as displays those data in new forms for promotion and education. This talk consists of three parts. The first part briefly covers e-Tangible heritage, in particular, our projects in Cambodia and Kyushu. Here I emphasize not only challenge in data acquisition but also the importance to create the new aspect of science, Cyber-archaeology, which allows us to have new findings in archaeology, based on obtained digital data. The second part covers how to display a Japanese folk dance by the performance of a humanoid robot. Here, we follow the paradigm, learning-from-observation, in which a robot learns how to perform a dance from observing a human dance performance. Due to the physical difference between a human and a robot, the robot cannot exactly mimic the human actions. Instead, the robot first extracts important actions of the dance, referred to key poses, and then symbolically describes them using Labanotation, which the dance community has been using for recording dances. Finally, this labanotation is mapped to each different robot hardware for reconstructing the original dance performance. The third part tries to answer the question, what is the merit to preserve folk dances by using robot performance by the answer that such symbolic representations for robot performance provide new understandings of those dances. In order to demonstrate this point, we focus on folk dances of native Taiwanese, which consists of 14 different tribes. We have converted those folk dances into Labanotation for robot performance. Further, by analyzing these Labanotations obtained, we can clarify the social relations among these 14 tribes.”




John Payne





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence