Robohub.org
 

Katsushi Ikeuchi: e-Intangible Heritage | CMU RI Seminar


by
26 February 2017



share this:

Link to video on YouTube

Abstract: “Tangible heritage, such as temples and statues, is disappearing day-by-day due to human and natural disaster. In e-tangible heritage, such as folk dances, local songs, and dialects, has the same story due to lack of inheritors and mixing cultures. We have been developing methods to preserve such tangible and in-tangible heritage in the digital form. This project, which we refer to as e-Heritage, aims not only record heritage, but also analyzes those recorded data for better understanding as well as displays those data in new forms for promotion and education. This talk consists of three parts. The first part briefly covers e-Tangible heritage, in particular, our projects in Cambodia and Kyushu. Here I emphasize not only challenge in data acquisition but also the importance to create the new aspect of science, Cyber-archaeology, which allows us to have new findings in archaeology, based on obtained digital data. The second part covers how to display a Japanese folk dance by the performance of a humanoid robot. Here, we follow the paradigm, learning-from-observation, in which a robot learns how to perform a dance from observing a human dance performance. Due to the physical difference between a human and a robot, the robot cannot exactly mimic the human actions. Instead, the robot first extracts important actions of the dance, referred to key poses, and then symbolically describes them using Labanotation, which the dance community has been using for recording dances. Finally, this labanotation is mapped to each different robot hardware for reconstructing the original dance performance. The third part tries to answer the question, what is the merit to preserve folk dances by using robot performance by the answer that such symbolic representations for robot performance provide new understandings of those dances. In order to demonstrate this point, we focus on folk dances of native Taiwanese, which consists of 14 different tribes. We have converted those folk dances into Labanotation for robot performance. Further, by analyzing these Labanotations obtained, we can clarify the social relations among these 14 tribes.”




John Payne





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence