Robohub.org
 

Learning acrobatic maneuvers for quadrocopters

by
17 April 2012



share this:

Have you ever seen those videos of quadrocopters performing acrobatic maneuvers?

The latest paper on the Autonomous Robots website presents a simple method to make your robot achieve adaptive fast open-loop maneuvers, whether it’s performing multiple flips or fast translation motions. The method is thought to be straightforward to implement and understand, and general enough that it could be applied to problems outside of aerial acrobatics.

Before the experiment, an engineer with knowledge of the problem defines a maneuver as an initial state, a desired final state, and a parameterized control function responsible for producing the maneuver. A model of the robot motion is used to initialize the parameters of this control function. Because models are never perfect, the parameters then need to be refined during experiments. The error between the robot’s desired state and its achieved state after each maneuver is used to iteratively correct parameter values. More details can be found in the figure below or in the paper.

Method to achieve adaptive fast open-loop maneuver. p represents the parameters to be adapted, C is a first-order correction matrix, γ is a correction step size, and e is a vector of error measurements. (1) The user defines a motion in terms of initial and desired final states and a parameterized input function. (2) A first-principles continuous-time model is used to find nominal parameters p0 and C. (3) The motion is performed on the physical vehicle, (4) the error is measured and (5) a correction is applied to the parameters. The process is then repeated.

Experiments were performed in the ETH Flying Machine Arena which is equipped with an 8-camera motion capture system providing robot position and rotation measurements used for parametric learning.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



ep.

352

podcast

Robotics Grasping and Manipulation Competition Spotlight, with Yu Sun

Yu Sun, previous chair of the Robotics Grasping and Manipulation Competition, speaks on the value that this competition brought to the robotics community.
21 May 2022, by
ep.

351

podcast

Early Days of ICRA Competitions, with Bill Smart

Bill Smart, one fo the early ICRA Competition Chairs, dives into the high-level decisions involved with creating a meaningful competition.
21 May 2022, by

New imaging method makes tiny robots visible in the body

Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-​sized microrobots individually and at high resolution in a living organism.
20 May 2022, by

A draft open standard for an Ethical Black Box

Within the RoboTIPS project, we have developed and tested several model of Ethical Black Boxes, including one for an e-puck robot, and another for the MIRO robot.
19 May 2022, by

Unable to attend #ICRA2022 for accessibility issues? Or just curious to see robots?

There are many things that can make it difficult to attend an in person conference in the United States and so the ICRA Organizing Committee, the IEEE Robotics and Automation Society and OhmniLabs would like to help you attend ICRA virtually.
17 May 2022, by
ep.

350

podcast

Duckietown Competition Spotlight, with Dr Liam Paull

Dr. Liam Paull, cofounder of the Duckietown competition talks about the only robotics competition where Rubber Duckies are the passengers on an autonomous driving track.
17 May 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association