Robohub.org
 

Learning Bayesian filters without precise ground truth


by
21 January 2011



share this:

As seen in a previous post, Bayes filters such as Kalman filters can be used to estimate the state of a robot. Usually, this requires having a model of how the robot’s sensor measurements relate to the state you want to observe and a model to predict how the robot’s control inputs impact its state. When little is know about these models, machine learning techniques can help find models automatically.

In the scenario imagined by Ko et al. the goal is to infer a car’s position (state) on a race track based on remote control commands and measurements from an Inertial Measurement Unit (IMU, see red box in picture below) that provides turn rates in roll, pitch, and yaw and accelerations in 3 dimensions. The car is only controlled in speed since a “rail” in the track makes it turn. As a start, Ko et al. collect data by driving the car around the track while recording its remote control commands, IMU measurements, and position (ground truth) estimated using an overhead camera. The data is then used to train probabilistic models (Gaussian Process models) that are finally integrated into a Bayes filter.

However, the need for ground truth requires extra effort and additional hardware such as the overhead camera. To overcome this problem, Ko et al. extend their method to deal with situations where no, little, or noisy ground truth is used to train the models.

Results show the successful tracking of the car with better performance than state-of-the-art approaches, even when no ground truth is given. The authors also show how the developed method can be used to allow the car or a robot arm to replay trajectories based on expert demonstrations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence